High temperature ReCOB piezocrystals: Recent developments

Piezoelectric sensors for high temperature applications have attracted attention due to their simplistic structure, fast response time and ease of integration. In this article, oxyborate ReCa4O(BO3)3 (Re: rare earth element; abbreviated as ReCOB) piezoelectric crystals were surveyed for their potent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2011-03, Vol.318 (1), p.884-889
Hauptverfasser: Zhang, Shujun, Yu, Fapeng, Xia, Ru, Fei, Yiting, Frantz, Eric, Zhao, Xian, Yuan, Durong, Chai, Bruce H.T., Snyder, David, Shrout, Thomas R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 889
container_issue 1
container_start_page 884
container_title Journal of crystal growth
container_volume 318
creator Zhang, Shujun
Yu, Fapeng
Xia, Ru
Fei, Yiting
Frantz, Eric
Zhao, Xian
Yuan, Durong
Chai, Bruce H.T.
Snyder, David
Shrout, Thomas R.
description Piezoelectric sensors for high temperature applications have attracted attention due to their simplistic structure, fast response time and ease of integration. In this article, oxyborate ReCa4O(BO3)3 (Re: rare earth element; abbreviated as ReCOB) piezoelectric crystals were surveyed for their potential use in high temperature sensing applications. In contrast to quartz and GaPO4 crystals, no phase transformation(s) are observed prior to their melting points, being in the order of ∼1500°C. The electrical resistivity, dielectric, piezoelectric properties and resonance-impedance characteristics were studied as a function of temperature over the range of Room Temperature (RT) to 950°C. The resistivity of ReCOB was found to be ∼2×108Ohmcm at 800°C, two orders higher than langasite, another widely studied crystal system. The electromechanical coupling factors k26 and piezoelectric coefficients d26 were found to be >20% and >10pC/N, respectively, with the variation being
doi_str_mv 10.1016/j.jcrysgro.2010.11.032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889407984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024810010122</els_id><sourcerecordid>889407984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-441d1dbe2434257505ff2330824c6e6f6d86677df29f55f7e3d7d43e315dee773</originalsourceid><addsrcrecordid>eNqFUEtLw0AQXkTBWv0Lkot4StxnNvGkFrVCoSB6XuLubN2QJnE3LdRf74ZWr15mhpnvwXwIXRKcEUzymzqrtd-Fle8yisclyTCjR2hCCslSgTE9RpNYaYopL07RWQg1xpFJ8ASVc7f6TAZY9-CrYeMheYXZ8iHpHXx3o-xQNeE2LjW0Q2JgC03Xr-McztGJjTe4OPQpen96fJvN08Xy-WV2v0g1k3xIOSeGmA-gnHEqpMDCWsoYLijXOeQ2N0WeS2ksLa0QVgIz0nAGjAgDICWbouu9bu-7rw2EQa1d0NA0VQvdJqiiKDmWZcEjMt8jte9C8GBV79268jtFsBqjUrX6jUqNUSlCVIwqEq8OFlXQVWN91WoX_tiUYypEISLubo-D-O_WgVdBO2g1GOdBD8p07j-rH_zBggo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889407984</pqid></control><display><type>article</type><title>High temperature ReCOB piezocrystals: Recent developments</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Shujun ; Yu, Fapeng ; Xia, Ru ; Fei, Yiting ; Frantz, Eric ; Zhao, Xian ; Yuan, Durong ; Chai, Bruce H.T. ; Snyder, David ; Shrout, Thomas R.</creator><creatorcontrib>Zhang, Shujun ; Yu, Fapeng ; Xia, Ru ; Fei, Yiting ; Frantz, Eric ; Zhao, Xian ; Yuan, Durong ; Chai, Bruce H.T. ; Snyder, David ; Shrout, Thomas R.</creatorcontrib><description>Piezoelectric sensors for high temperature applications have attracted attention due to their simplistic structure, fast response time and ease of integration. In this article, oxyborate ReCa4O(BO3)3 (Re: rare earth element; abbreviated as ReCOB) piezoelectric crystals were surveyed for their potential use in high temperature sensing applications. In contrast to quartz and GaPO4 crystals, no phase transformation(s) are observed prior to their melting points, being in the order of ∼1500°C. The electrical resistivity, dielectric, piezoelectric properties and resonance-impedance characteristics were studied as a function of temperature over the range of Room Temperature (RT) to 950°C. The resistivity of ReCOB was found to be ∼2×108Ohmcm at 800°C, two orders higher than langasite, another widely studied crystal system. The electromechanical coupling factors k26 and piezoelectric coefficients d26 were found to be &gt;20% and &gt;10pC/N, respectively, with the variation being &lt;20% over the studied temperature range. The resonance frequency for width shear vibration was found to decrease linearly with increasing temperature for YCOB crystals, with the Temperature Coefficient of Frequency (TCF) in the order of 70ppm/K, while for NdCOB crystals, a nonlinear behavior was observed, demonstrating a potential zero TCF crystal cut. The high resistivity, high piezoelectric properties and low mechanical and dielectric losses, together with temperature independent characteristics, demonstrate that oxyborate crystals are promising candidates for high temperature sensing applications.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2010.11.032</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Characterization ; A2. Czochralski method ; B1. Borates ; B2. Piezoelectric materials ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Crystals ; Detection ; Dielectric loss ; Dielectric, piezoelectric, ferroelectric and antiferroelectric materials ; Dielectrics, piezoelectrics, and ferroelectrics and their properties ; Electrical properties of specific thin films ; Electrical resistivity ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Exact sciences and technology ; Growth from melts; zone melting and refining ; Materials science ; Methods of crystal growth; physics of crystal growth ; Physics ; Piezoelectricity ; Rare earth elements ; Shear ; Vibration</subject><ispartof>Journal of crystal growth, 2011-03, Vol.318 (1), p.884-889</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-441d1dbe2434257505ff2330824c6e6f6d86677df29f55f7e3d7d43e315dee773</citedby><cites>FETCH-LOGICAL-c374t-441d1dbe2434257505ff2330824c6e6f6d86677df29f55f7e3d7d43e315dee773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2010.11.032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,3537,23911,23912,25121,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24025585$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Shujun</creatorcontrib><creatorcontrib>Yu, Fapeng</creatorcontrib><creatorcontrib>Xia, Ru</creatorcontrib><creatorcontrib>Fei, Yiting</creatorcontrib><creatorcontrib>Frantz, Eric</creatorcontrib><creatorcontrib>Zhao, Xian</creatorcontrib><creatorcontrib>Yuan, Durong</creatorcontrib><creatorcontrib>Chai, Bruce H.T.</creatorcontrib><creatorcontrib>Snyder, David</creatorcontrib><creatorcontrib>Shrout, Thomas R.</creatorcontrib><title>High temperature ReCOB piezocrystals: Recent developments</title><title>Journal of crystal growth</title><description>Piezoelectric sensors for high temperature applications have attracted attention due to their simplistic structure, fast response time and ease of integration. In this article, oxyborate ReCa4O(BO3)3 (Re: rare earth element; abbreviated as ReCOB) piezoelectric crystals were surveyed for their potential use in high temperature sensing applications. In contrast to quartz and GaPO4 crystals, no phase transformation(s) are observed prior to their melting points, being in the order of ∼1500°C. The electrical resistivity, dielectric, piezoelectric properties and resonance-impedance characteristics were studied as a function of temperature over the range of Room Temperature (RT) to 950°C. The resistivity of ReCOB was found to be ∼2×108Ohmcm at 800°C, two orders higher than langasite, another widely studied crystal system. The electromechanical coupling factors k26 and piezoelectric coefficients d26 were found to be &gt;20% and &gt;10pC/N, respectively, with the variation being &lt;20% over the studied temperature range. The resonance frequency for width shear vibration was found to decrease linearly with increasing temperature for YCOB crystals, with the Temperature Coefficient of Frequency (TCF) in the order of 70ppm/K, while for NdCOB crystals, a nonlinear behavior was observed, demonstrating a potential zero TCF crystal cut. The high resistivity, high piezoelectric properties and low mechanical and dielectric losses, together with temperature independent characteristics, demonstrate that oxyborate crystals are promising candidates for high temperature sensing applications.</description><subject>A1. Characterization</subject><subject>A2. Czochralski method</subject><subject>B1. Borates</subject><subject>B2. Piezoelectric materials</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystals</subject><subject>Detection</subject><subject>Dielectric loss</subject><subject>Dielectric, piezoelectric, ferroelectric and antiferroelectric materials</subject><subject>Dielectrics, piezoelectrics, and ferroelectrics and their properties</subject><subject>Electrical properties of specific thin films</subject><subject>Electrical resistivity</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Exact sciences and technology</subject><subject>Growth from melts; zone melting and refining</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Physics</subject><subject>Piezoelectricity</subject><subject>Rare earth elements</subject><subject>Shear</subject><subject>Vibration</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFUEtLw0AQXkTBWv0Lkot4StxnNvGkFrVCoSB6XuLubN2QJnE3LdRf74ZWr15mhpnvwXwIXRKcEUzymzqrtd-Fle8yisclyTCjR2hCCslSgTE9RpNYaYopL07RWQg1xpFJ8ASVc7f6TAZY9-CrYeMheYXZ8iHpHXx3o-xQNeE2LjW0Q2JgC03Xr-McztGJjTe4OPQpen96fJvN08Xy-WV2v0g1k3xIOSeGmA-gnHEqpMDCWsoYLijXOeQ2N0WeS2ksLa0QVgIz0nAGjAgDICWbouu9bu-7rw2EQa1d0NA0VQvdJqiiKDmWZcEjMt8jte9C8GBV79268jtFsBqjUrX6jUqNUSlCVIwqEq8OFlXQVWN91WoX_tiUYypEISLubo-D-O_WgVdBO2g1GOdBD8p07j-rH_zBggo</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Zhang, Shujun</creator><creator>Yu, Fapeng</creator><creator>Xia, Ru</creator><creator>Fei, Yiting</creator><creator>Frantz, Eric</creator><creator>Zhao, Xian</creator><creator>Yuan, Durong</creator><creator>Chai, Bruce H.T.</creator><creator>Snyder, David</creator><creator>Shrout, Thomas R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110301</creationdate><title>High temperature ReCOB piezocrystals: Recent developments</title><author>Zhang, Shujun ; Yu, Fapeng ; Xia, Ru ; Fei, Yiting ; Frantz, Eric ; Zhao, Xian ; Yuan, Durong ; Chai, Bruce H.T. ; Snyder, David ; Shrout, Thomas R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-441d1dbe2434257505ff2330824c6e6f6d86677df29f55f7e3d7d43e315dee773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>A1. Characterization</topic><topic>A2. Czochralski method</topic><topic>B1. Borates</topic><topic>B2. Piezoelectric materials</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystals</topic><topic>Detection</topic><topic>Dielectric loss</topic><topic>Dielectric, piezoelectric, ferroelectric and antiferroelectric materials</topic><topic>Dielectrics, piezoelectrics, and ferroelectrics and their properties</topic><topic>Electrical properties of specific thin films</topic><topic>Electrical resistivity</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Exact sciences and technology</topic><topic>Growth from melts; zone melting and refining</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Physics</topic><topic>Piezoelectricity</topic><topic>Rare earth elements</topic><topic>Shear</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shujun</creatorcontrib><creatorcontrib>Yu, Fapeng</creatorcontrib><creatorcontrib>Xia, Ru</creatorcontrib><creatorcontrib>Fei, Yiting</creatorcontrib><creatorcontrib>Frantz, Eric</creatorcontrib><creatorcontrib>Zhao, Xian</creatorcontrib><creatorcontrib>Yuan, Durong</creatorcontrib><creatorcontrib>Chai, Bruce H.T.</creatorcontrib><creatorcontrib>Snyder, David</creatorcontrib><creatorcontrib>Shrout, Thomas R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shujun</au><au>Yu, Fapeng</au><au>Xia, Ru</au><au>Fei, Yiting</au><au>Frantz, Eric</au><au>Zhao, Xian</au><au>Yuan, Durong</au><au>Chai, Bruce H.T.</au><au>Snyder, David</au><au>Shrout, Thomas R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High temperature ReCOB piezocrystals: Recent developments</atitle><jtitle>Journal of crystal growth</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>318</volume><issue>1</issue><spage>884</spage><epage>889</epage><pages>884-889</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>Piezoelectric sensors for high temperature applications have attracted attention due to their simplistic structure, fast response time and ease of integration. In this article, oxyborate ReCa4O(BO3)3 (Re: rare earth element; abbreviated as ReCOB) piezoelectric crystals were surveyed for their potential use in high temperature sensing applications. In contrast to quartz and GaPO4 crystals, no phase transformation(s) are observed prior to their melting points, being in the order of ∼1500°C. The electrical resistivity, dielectric, piezoelectric properties and resonance-impedance characteristics were studied as a function of temperature over the range of Room Temperature (RT) to 950°C. The resistivity of ReCOB was found to be ∼2×108Ohmcm at 800°C, two orders higher than langasite, another widely studied crystal system. The electromechanical coupling factors k26 and piezoelectric coefficients d26 were found to be &gt;20% and &gt;10pC/N, respectively, with the variation being &lt;20% over the studied temperature range. The resonance frequency for width shear vibration was found to decrease linearly with increasing temperature for YCOB crystals, with the Temperature Coefficient of Frequency (TCF) in the order of 70ppm/K, while for NdCOB crystals, a nonlinear behavior was observed, demonstrating a potential zero TCF crystal cut. The high resistivity, high piezoelectric properties and low mechanical and dielectric losses, together with temperature independent characteristics, demonstrate that oxyborate crystals are promising candidates for high temperature sensing applications.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2010.11.032</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2011-03, Vol.318 (1), p.884-889
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_miscellaneous_889407984
source Elsevier ScienceDirect Journals
subjects A1. Characterization
A2. Czochralski method
B1. Borates
B2. Piezoelectric materials
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
Crystals
Detection
Dielectric loss
Dielectric, piezoelectric, ferroelectric and antiferroelectric materials
Dielectrics, piezoelectrics, and ferroelectrics and their properties
Electrical properties of specific thin films
Electrical resistivity
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Exact sciences and technology
Growth from melts
zone melting and refining
Materials science
Methods of crystal growth
physics of crystal growth
Physics
Piezoelectricity
Rare earth elements
Shear
Vibration
title High temperature ReCOB piezocrystals: Recent developments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A24%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20temperature%20ReCOB%20piezocrystals:%20Recent%20developments&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Zhang,%20Shujun&rft.date=2011-03-01&rft.volume=318&rft.issue=1&rft.spage=884&rft.epage=889&rft.pages=884-889&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2010.11.032&rft_dat=%3Cproquest_cross%3E889407984%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889407984&rft_id=info:pmid/&rft_els_id=S0022024810010122&rfr_iscdi=true