Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis
The vast majority of bladder cancers originate within of the tissue surface, making optical coherence tomography (OCT) a potentially powerful tool for recognizing cancers that are not easily visible with current techniques. OCT is a new technology, however, and surgeons are not familiar with the res...
Gespeichert in:
Veröffentlicht in: | Journal of Biomedical Optics 2008-03, Vol.13 (2), p.024003-024009 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 024009 |
---|---|
container_issue | 2 |
container_start_page | 024003 |
container_title | Journal of Biomedical Optics |
container_volume | 13 |
creator | Lingley-Papadopoulos, Colleen A Loew, Murray H Manyak, Michael J Zara, Jason M |
description | The vast majority of bladder cancers originate within
of the tissue surface, making optical coherence tomography (OCT) a potentially powerful tool for recognizing cancers that are not easily visible with current techniques. OCT is a new technology, however, and surgeons are not familiar with the resulting images. Technology able to analyze and provide diagnoses based on OCT images would improve the clinical utility of OCT systems. We present an automated algorithm that uses texture analysis to detect bladder cancer from OCT images. Our algorithm was applied to 182 OCT images of bladder tissue, taken from 68 distinct areas and 21 patients, to classify the images as noncancerous, dysplasia, carcinoma
(CIS), or papillary lesions, and to determine tumor invasion. The results, when compared with the corresponding pathology, indicate that the algorithm is effective at differentiating cancerous from noncancerous tissue with a sensitivity of 92 and a specificity of 62 . With further research to improve discrimination between cancer types and recognition of false positives, it may be possible to use OCT to guide endoscopic biopsies toward tissue likely to contain cancer and to avoid unnecessary biopsies of normal tissue. |
doi_str_mv | 10.1117/1.2904987 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889407483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>889407483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-ed2ae87e213bc385bd36e2e35054eb3bf4762d6f6be8a18ed6be61badf5ec8533</originalsourceid><addsrcrecordid>eNp9kT9v2zAQxYmiQZI6GfoFCk4NOijhH4kix9aI0wYBnCGZBYo82SwkUSUpoP72oSGj3bLcPbz74Yb3EPpMyS2ltL6jt0yRUsn6A7qklSAFY5J-zJpIXnAh5AX6FONvQogUSpyjCypLUSkhLtGw9sM0Jwg4gPG70SXnR-w7bPRosutGnPaA5-BGHQ647bW12Z6jG3fYT8kZ3WPj9xAg8zj5we-CnvYHrEeLE_xNc4CsdX-ILl6hs073Ea5Pe4VeN_cv65_F0_bh1_r7U2G44qkAyzTIGhjlreGyai0XwIBXpCqh5W1X1oJZ0YkWpKYSbBaCttp2FRhZcb5CN8vfKfg_M8TUDC4a6Hs9gp9jI6UqSV3KI_n1XVIoqjhRKoPfFtAEH2OArpmCG3ImDSXNsYWGNqcWMvvl9HRuB7D_yVPsGWALECcH_86PP7bPm21uiVB-nIQRVhKyaMrfAM3Ukjc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69193099</pqid></control><display><type>article</type><title>Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lingley-Papadopoulos, Colleen A ; Loew, Murray H ; Manyak, Michael J ; Zara, Jason M</creator><creatorcontrib>Lingley-Papadopoulos, Colleen A ; Loew, Murray H ; Manyak, Michael J ; Zara, Jason M</creatorcontrib><description>The vast majority of bladder cancers originate within
of the tissue surface, making optical coherence tomography (OCT) a potentially powerful tool for recognizing cancers that are not easily visible with current techniques. OCT is a new technology, however, and surgeons are not familiar with the resulting images. Technology able to analyze and provide diagnoses based on OCT images would improve the clinical utility of OCT systems. We present an automated algorithm that uses texture analysis to detect bladder cancer from OCT images. Our algorithm was applied to 182 OCT images of bladder tissue, taken from 68 distinct areas and 21 patients, to classify the images as noncancerous, dysplasia, carcinoma
(CIS), or papillary lesions, and to determine tumor invasion. The results, when compared with the corresponding pathology, indicate that the algorithm is effective at differentiating cancerous from noncancerous tissue with a sensitivity of 92 and a specificity of 62 . With further research to improve discrimination between cancer types and recognition of false positives, it may be possible to use OCT to guide endoscopic biopsies toward tissue likely to contain cancer and to avoid unnecessary biopsies of normal tissue.</description><identifier>ISSN: 1083-3668</identifier><identifier>EISSN: 1560-2281</identifier><identifier>DOI: 10.1117/1.2904987</identifier><identifier>PMID: 18465966</identifier><identifier>CODEN: JBOPFO</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Artificial Intelligence ; Bladder ; bladder cancer ; Cancer ; computer-aided diagnosis ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Optical Coherence Tomography ; Pattern Recognition, Automated - methods ; Recognition ; Reproducibility of Results ; Sensitivity and Specificity ; Surface layer ; Texture ; texture analysis ; Tomography, Optical Coherence - methods ; Urinary Bladder Neoplasms - pathology</subject><ispartof>Journal of Biomedical Optics, 2008-03, Vol.13 (2), p.024003-024009</ispartof><rights>2008 Society of Photo-Optical Instrumentation Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-ed2ae87e213bc385bd36e2e35054eb3bf4762d6f6be8a18ed6be61badf5ec8533</citedby><cites>FETCH-LOGICAL-c393t-ed2ae87e213bc385bd36e2e35054eb3bf4762d6f6be8a18ed6be61badf5ec8533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18465966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lingley-Papadopoulos, Colleen A</creatorcontrib><creatorcontrib>Loew, Murray H</creatorcontrib><creatorcontrib>Manyak, Michael J</creatorcontrib><creatorcontrib>Zara, Jason M</creatorcontrib><title>Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis</title><title>Journal of Biomedical Optics</title><addtitle>J Biomed Opt</addtitle><description>The vast majority of bladder cancers originate within
of the tissue surface, making optical coherence tomography (OCT) a potentially powerful tool for recognizing cancers that are not easily visible with current techniques. OCT is a new technology, however, and surgeons are not familiar with the resulting images. Technology able to analyze and provide diagnoses based on OCT images would improve the clinical utility of OCT systems. We present an automated algorithm that uses texture analysis to detect bladder cancer from OCT images. Our algorithm was applied to 182 OCT images of bladder tissue, taken from 68 distinct areas and 21 patients, to classify the images as noncancerous, dysplasia, carcinoma
(CIS), or papillary lesions, and to determine tumor invasion. The results, when compared with the corresponding pathology, indicate that the algorithm is effective at differentiating cancerous from noncancerous tissue with a sensitivity of 92 and a specificity of 62 . With further research to improve discrimination between cancer types and recognition of false positives, it may be possible to use OCT to guide endoscopic biopsies toward tissue likely to contain cancer and to avoid unnecessary biopsies of normal tissue.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Bladder</subject><subject>bladder cancer</subject><subject>Cancer</subject><subject>computer-aided diagnosis</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Optical Coherence Tomography</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Recognition</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Surface layer</subject><subject>Texture</subject><subject>texture analysis</subject><subject>Tomography, Optical Coherence - methods</subject><subject>Urinary Bladder Neoplasms - pathology</subject><issn>1083-3668</issn><issn>1560-2281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kT9v2zAQxYmiQZI6GfoFCk4NOijhH4kix9aI0wYBnCGZBYo82SwkUSUpoP72oSGj3bLcPbz74Yb3EPpMyS2ltL6jt0yRUsn6A7qklSAFY5J-zJpIXnAh5AX6FONvQogUSpyjCypLUSkhLtGw9sM0Jwg4gPG70SXnR-w7bPRosutGnPaA5-BGHQ647bW12Z6jG3fYT8kZ3WPj9xAg8zj5we-CnvYHrEeLE_xNc4CsdX-ILl6hs073Ea5Pe4VeN_cv65_F0_bh1_r7U2G44qkAyzTIGhjlreGyai0XwIBXpCqh5W1X1oJZ0YkWpKYSbBaCttp2FRhZcb5CN8vfKfg_M8TUDC4a6Hs9gp9jI6UqSV3KI_n1XVIoqjhRKoPfFtAEH2OArpmCG3ImDSXNsYWGNqcWMvvl9HRuB7D_yVPsGWALECcH_86PP7bPm21uiVB-nIQRVhKyaMrfAM3Ukjc</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Lingley-Papadopoulos, Colleen A</creator><creator>Loew, Murray H</creator><creator>Manyak, Michael J</creator><creator>Zara, Jason M</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20080301</creationdate><title>Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis</title><author>Lingley-Papadopoulos, Colleen A ; Loew, Murray H ; Manyak, Michael J ; Zara, Jason M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-ed2ae87e213bc385bd36e2e35054eb3bf4762d6f6be8a18ed6be61badf5ec8533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Bladder</topic><topic>bladder cancer</topic><topic>Cancer</topic><topic>computer-aided diagnosis</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Optical Coherence Tomography</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Recognition</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Surface layer</topic><topic>Texture</topic><topic>texture analysis</topic><topic>Tomography, Optical Coherence - methods</topic><topic>Urinary Bladder Neoplasms - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lingley-Papadopoulos, Colleen A</creatorcontrib><creatorcontrib>Loew, Murray H</creatorcontrib><creatorcontrib>Manyak, Michael J</creatorcontrib><creatorcontrib>Zara, Jason M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Biomedical Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lingley-Papadopoulos, Colleen A</au><au>Loew, Murray H</au><au>Manyak, Michael J</au><au>Zara, Jason M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis</atitle><jtitle>Journal of Biomedical Optics</jtitle><addtitle>J Biomed Opt</addtitle><date>2008-03-01</date><risdate>2008</risdate><volume>13</volume><issue>2</issue><spage>024003</spage><epage>024009</epage><pages>024003-024009</pages><issn>1083-3668</issn><eissn>1560-2281</eissn><coden>JBOPFO</coden><abstract>The vast majority of bladder cancers originate within
of the tissue surface, making optical coherence tomography (OCT) a potentially powerful tool for recognizing cancers that are not easily visible with current techniques. OCT is a new technology, however, and surgeons are not familiar with the resulting images. Technology able to analyze and provide diagnoses based on OCT images would improve the clinical utility of OCT systems. We present an automated algorithm that uses texture analysis to detect bladder cancer from OCT images. Our algorithm was applied to 182 OCT images of bladder tissue, taken from 68 distinct areas and 21 patients, to classify the images as noncancerous, dysplasia, carcinoma
(CIS), or papillary lesions, and to determine tumor invasion. The results, when compared with the corresponding pathology, indicate that the algorithm is effective at differentiating cancerous from noncancerous tissue with a sensitivity of 92 and a specificity of 62 . With further research to improve discrimination between cancer types and recognition of false positives, it may be possible to use OCT to guide endoscopic biopsies toward tissue likely to contain cancer and to avoid unnecessary biopsies of normal tissue.</abstract><cop>United States</cop><pmid>18465966</pmid><doi>10.1117/1.2904987</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-3668 |
ispartof | Journal of Biomedical Optics, 2008-03, Vol.13 (2), p.024003-024009 |
issn | 1083-3668 1560-2281 |
language | eng |
recordid | cdi_proquest_miscellaneous_889407483 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Artificial Intelligence Bladder bladder cancer Cancer computer-aided diagnosis Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Optical Coherence Tomography Pattern Recognition, Automated - methods Recognition Reproducibility of Results Sensitivity and Specificity Surface layer Texture texture analysis Tomography, Optical Coherence - methods Urinary Bladder Neoplasms - pathology |
title | Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A16%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20recognition%20of%20cancer%20in%20the%20urinary%20bladder%20using%20optical%20coherence%20tomography%20and%20texture%20analysis&rft.jtitle=Journal%20of%20Biomedical%20Optics&rft.au=Lingley-Papadopoulos,%20Colleen%20A&rft.date=2008-03-01&rft.volume=13&rft.issue=2&rft.spage=024003&rft.epage=024009&rft.pages=024003-024009&rft.issn=1083-3668&rft.eissn=1560-2281&rft.coden=JBOPFO&rft_id=info:doi/10.1117/1.2904987&rft_dat=%3Cproquest_cross%3E889407483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69193099&rft_id=info:pmid/18465966&rfr_iscdi=true |