Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis

The vast majority of bladder cancers originate within of the tissue surface, making optical coherence tomography (OCT) a potentially powerful tool for recognizing cancers that are not easily visible with current techniques. OCT is a new technology, however, and surgeons are not familiar with the res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Biomedical Optics 2008-03, Vol.13 (2), p.024003-024009
Hauptverfasser: Lingley-Papadopoulos, Colleen A, Loew, Murray H, Manyak, Michael J, Zara, Jason M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 024009
container_issue 2
container_start_page 024003
container_title Journal of Biomedical Optics
container_volume 13
creator Lingley-Papadopoulos, Colleen A
Loew, Murray H
Manyak, Michael J
Zara, Jason M
description The vast majority of bladder cancers originate within of the tissue surface, making optical coherence tomography (OCT) a potentially powerful tool for recognizing cancers that are not easily visible with current techniques. OCT is a new technology, however, and surgeons are not familiar with the resulting images. Technology able to analyze and provide diagnoses based on OCT images would improve the clinical utility of OCT systems. We present an automated algorithm that uses texture analysis to detect bladder cancer from OCT images. Our algorithm was applied to 182 OCT images of bladder tissue, taken from 68 distinct areas and 21 patients, to classify the images as noncancerous, dysplasia, carcinoma (CIS), or papillary lesions, and to determine tumor invasion. The results, when compared with the corresponding pathology, indicate that the algorithm is effective at differentiating cancerous from noncancerous tissue with a sensitivity of 92 and a specificity of 62 . With further research to improve discrimination between cancer types and recognition of false positives, it may be possible to use OCT to guide endoscopic biopsies toward tissue likely to contain cancer and to avoid unnecessary biopsies of normal tissue.
doi_str_mv 10.1117/1.2904987
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889407483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>889407483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-ed2ae87e213bc385bd36e2e35054eb3bf4762d6f6be8a18ed6be61badf5ec8533</originalsourceid><addsrcrecordid>eNp9kT9v2zAQxYmiQZI6GfoFCk4NOijhH4kix9aI0wYBnCGZBYo82SwkUSUpoP72oSGj3bLcPbz74Yb3EPpMyS2ltL6jt0yRUsn6A7qklSAFY5J-zJpIXnAh5AX6FONvQogUSpyjCypLUSkhLtGw9sM0Jwg4gPG70SXnR-w7bPRosutGnPaA5-BGHQ647bW12Z6jG3fYT8kZ3WPj9xAg8zj5we-CnvYHrEeLE_xNc4CsdX-ILl6hs073Ea5Pe4VeN_cv65_F0_bh1_r7U2G44qkAyzTIGhjlreGyai0XwIBXpCqh5W1X1oJZ0YkWpKYSbBaCttp2FRhZcb5CN8vfKfg_M8TUDC4a6Hs9gp9jI6UqSV3KI_n1XVIoqjhRKoPfFtAEH2OArpmCG3ImDSXNsYWGNqcWMvvl9HRuB7D_yVPsGWALECcH_86PP7bPm21uiVB-nIQRVhKyaMrfAM3Ukjc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69193099</pqid></control><display><type>article</type><title>Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lingley-Papadopoulos, Colleen A ; Loew, Murray H ; Manyak, Michael J ; Zara, Jason M</creator><creatorcontrib>Lingley-Papadopoulos, Colleen A ; Loew, Murray H ; Manyak, Michael J ; Zara, Jason M</creatorcontrib><description>The vast majority of bladder cancers originate within of the tissue surface, making optical coherence tomography (OCT) a potentially powerful tool for recognizing cancers that are not easily visible with current techniques. OCT is a new technology, however, and surgeons are not familiar with the resulting images. Technology able to analyze and provide diagnoses based on OCT images would improve the clinical utility of OCT systems. We present an automated algorithm that uses texture analysis to detect bladder cancer from OCT images. Our algorithm was applied to 182 OCT images of bladder tissue, taken from 68 distinct areas and 21 patients, to classify the images as noncancerous, dysplasia, carcinoma (CIS), or papillary lesions, and to determine tumor invasion. The results, when compared with the corresponding pathology, indicate that the algorithm is effective at differentiating cancerous from noncancerous tissue with a sensitivity of 92 and a specificity of 62 . With further research to improve discrimination between cancer types and recognition of false positives, it may be possible to use OCT to guide endoscopic biopsies toward tissue likely to contain cancer and to avoid unnecessary biopsies of normal tissue.</description><identifier>ISSN: 1083-3668</identifier><identifier>EISSN: 1560-2281</identifier><identifier>DOI: 10.1117/1.2904987</identifier><identifier>PMID: 18465966</identifier><identifier>CODEN: JBOPFO</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Artificial Intelligence ; Bladder ; bladder cancer ; Cancer ; computer-aided diagnosis ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Optical Coherence Tomography ; Pattern Recognition, Automated - methods ; Recognition ; Reproducibility of Results ; Sensitivity and Specificity ; Surface layer ; Texture ; texture analysis ; Tomography, Optical Coherence - methods ; Urinary Bladder Neoplasms - pathology</subject><ispartof>Journal of Biomedical Optics, 2008-03, Vol.13 (2), p.024003-024009</ispartof><rights>2008 Society of Photo-Optical Instrumentation Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-ed2ae87e213bc385bd36e2e35054eb3bf4762d6f6be8a18ed6be61badf5ec8533</citedby><cites>FETCH-LOGICAL-c393t-ed2ae87e213bc385bd36e2e35054eb3bf4762d6f6be8a18ed6be61badf5ec8533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18465966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lingley-Papadopoulos, Colleen A</creatorcontrib><creatorcontrib>Loew, Murray H</creatorcontrib><creatorcontrib>Manyak, Michael J</creatorcontrib><creatorcontrib>Zara, Jason M</creatorcontrib><title>Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis</title><title>Journal of Biomedical Optics</title><addtitle>J Biomed Opt</addtitle><description>The vast majority of bladder cancers originate within of the tissue surface, making optical coherence tomography (OCT) a potentially powerful tool for recognizing cancers that are not easily visible with current techniques. OCT is a new technology, however, and surgeons are not familiar with the resulting images. Technology able to analyze and provide diagnoses based on OCT images would improve the clinical utility of OCT systems. We present an automated algorithm that uses texture analysis to detect bladder cancer from OCT images. Our algorithm was applied to 182 OCT images of bladder tissue, taken from 68 distinct areas and 21 patients, to classify the images as noncancerous, dysplasia, carcinoma (CIS), or papillary lesions, and to determine tumor invasion. The results, when compared with the corresponding pathology, indicate that the algorithm is effective at differentiating cancerous from noncancerous tissue with a sensitivity of 92 and a specificity of 62 . With further research to improve discrimination between cancer types and recognition of false positives, it may be possible to use OCT to guide endoscopic biopsies toward tissue likely to contain cancer and to avoid unnecessary biopsies of normal tissue.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Bladder</subject><subject>bladder cancer</subject><subject>Cancer</subject><subject>computer-aided diagnosis</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Optical Coherence Tomography</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Recognition</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Surface layer</subject><subject>Texture</subject><subject>texture analysis</subject><subject>Tomography, Optical Coherence - methods</subject><subject>Urinary Bladder Neoplasms - pathology</subject><issn>1083-3668</issn><issn>1560-2281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kT9v2zAQxYmiQZI6GfoFCk4NOijhH4kix9aI0wYBnCGZBYo82SwkUSUpoP72oSGj3bLcPbz74Yb3EPpMyS2ltL6jt0yRUsn6A7qklSAFY5J-zJpIXnAh5AX6FONvQogUSpyjCypLUSkhLtGw9sM0Jwg4gPG70SXnR-w7bPRosutGnPaA5-BGHQ647bW12Z6jG3fYT8kZ3WPj9xAg8zj5we-CnvYHrEeLE_xNc4CsdX-ILl6hs073Ea5Pe4VeN_cv65_F0_bh1_r7U2G44qkAyzTIGhjlreGyai0XwIBXpCqh5W1X1oJZ0YkWpKYSbBaCttp2FRhZcb5CN8vfKfg_M8TUDC4a6Hs9gp9jI6UqSV3KI_n1XVIoqjhRKoPfFtAEH2OArpmCG3ImDSXNsYWGNqcWMvvl9HRuB7D_yVPsGWALECcH_86PP7bPm21uiVB-nIQRVhKyaMrfAM3Ukjc</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Lingley-Papadopoulos, Colleen A</creator><creator>Loew, Murray H</creator><creator>Manyak, Michael J</creator><creator>Zara, Jason M</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20080301</creationdate><title>Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis</title><author>Lingley-Papadopoulos, Colleen A ; Loew, Murray H ; Manyak, Michael J ; Zara, Jason M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-ed2ae87e213bc385bd36e2e35054eb3bf4762d6f6be8a18ed6be61badf5ec8533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Bladder</topic><topic>bladder cancer</topic><topic>Cancer</topic><topic>computer-aided diagnosis</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Optical Coherence Tomography</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Recognition</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Surface layer</topic><topic>Texture</topic><topic>texture analysis</topic><topic>Tomography, Optical Coherence - methods</topic><topic>Urinary Bladder Neoplasms - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lingley-Papadopoulos, Colleen A</creatorcontrib><creatorcontrib>Loew, Murray H</creatorcontrib><creatorcontrib>Manyak, Michael J</creatorcontrib><creatorcontrib>Zara, Jason M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Biomedical Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lingley-Papadopoulos, Colleen A</au><au>Loew, Murray H</au><au>Manyak, Michael J</au><au>Zara, Jason M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis</atitle><jtitle>Journal of Biomedical Optics</jtitle><addtitle>J Biomed Opt</addtitle><date>2008-03-01</date><risdate>2008</risdate><volume>13</volume><issue>2</issue><spage>024003</spage><epage>024009</epage><pages>024003-024009</pages><issn>1083-3668</issn><eissn>1560-2281</eissn><coden>JBOPFO</coden><abstract>The vast majority of bladder cancers originate within of the tissue surface, making optical coherence tomography (OCT) a potentially powerful tool for recognizing cancers that are not easily visible with current techniques. OCT is a new technology, however, and surgeons are not familiar with the resulting images. Technology able to analyze and provide diagnoses based on OCT images would improve the clinical utility of OCT systems. We present an automated algorithm that uses texture analysis to detect bladder cancer from OCT images. Our algorithm was applied to 182 OCT images of bladder tissue, taken from 68 distinct areas and 21 patients, to classify the images as noncancerous, dysplasia, carcinoma (CIS), or papillary lesions, and to determine tumor invasion. The results, when compared with the corresponding pathology, indicate that the algorithm is effective at differentiating cancerous from noncancerous tissue with a sensitivity of 92 and a specificity of 62 . With further research to improve discrimination between cancer types and recognition of false positives, it may be possible to use OCT to guide endoscopic biopsies toward tissue likely to contain cancer and to avoid unnecessary biopsies of normal tissue.</abstract><cop>United States</cop><pmid>18465966</pmid><doi>10.1117/1.2904987</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1083-3668
ispartof Journal of Biomedical Optics, 2008-03, Vol.13 (2), p.024003-024009
issn 1083-3668
1560-2281
language eng
recordid cdi_proquest_miscellaneous_889407483
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Artificial Intelligence
Bladder
bladder cancer
Cancer
computer-aided diagnosis
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Optical Coherence Tomography
Pattern Recognition, Automated - methods
Recognition
Reproducibility of Results
Sensitivity and Specificity
Surface layer
Texture
texture analysis
Tomography, Optical Coherence - methods
Urinary Bladder Neoplasms - pathology
title Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A16%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20recognition%20of%20cancer%20in%20the%20urinary%20bladder%20using%20optical%20coherence%20tomography%20and%20texture%20analysis&rft.jtitle=Journal%20of%20Biomedical%20Optics&rft.au=Lingley-Papadopoulos,%20Colleen%20A&rft.date=2008-03-01&rft.volume=13&rft.issue=2&rft.spage=024003&rft.epage=024009&rft.pages=024003-024009&rft.issn=1083-3668&rft.eissn=1560-2281&rft.coden=JBOPFO&rft_id=info:doi/10.1117/1.2904987&rft_dat=%3Cproquest_cross%3E889407483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69193099&rft_id=info:pmid/18465966&rfr_iscdi=true