Scaling parameters of bubbles and drops; interpretation and case study with air in silicon oil

Buoyancy-driven bubbles and drops are deformable and exhibit different boundaries from mobile to immobile. Owing to the complexity of these flows, the literature knows various scaling parameters for their description. This paper determines a set of parameters on the basis of the force balance equati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica 2011-07, Vol.219 (3-4), p.189-202
Hauptverfasser: Peters, Franz, Gaertner, Björn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 202
container_issue 3-4
container_start_page 189
container_title Acta mechanica
container_volume 219
creator Peters, Franz
Gaertner, Björn
description Buoyancy-driven bubbles and drops are deformable and exhibit different boundaries from mobile to immobile. Owing to the complexity of these flows, the literature knows various scaling parameters for their description. This paper determines a set of parameters on the basis of the force balance equations. It identifies the Archimedes number as the leading parameter while the Reynolds number is considered a flow variable. This ordering scheme of parameters is applied to a set of new data on bubbles rising in five different silicon oils. Data representation and limiting cases come out consistently. The use of the Archimedes number leads even to a successful simple model for the normalized rise velocity.
doi_str_mv 10.1007/s00707-010-0431-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_889405084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A355249520</galeid><sourcerecordid>A355249520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-8b3500825508ecefceba39e2d1a9685f4e7837aed6f29df4206de9280b676c853</originalsourceid><addsrcrecordid>eNp1kV-L1TAQxYMoeF39AL4FQXzqOknTNsGnZfEfLPigvhrSdHLN0tvWTIvst3euXRQECSRk5jeHkxwhniu4VADda-INugoUVGBqVTUPxEG1ylWtq7uH4gAAXHQdPBZPiG75pjujDuLb5xjGPB3lEko44YqF5Jxkv_X9iCTDNMihzAu9kXni5lJwDWuep9-dGAglrdtwJ3_m9bsMuTAmKY85MjLn8al4lMJI-Oz-vBBf3739cv2huvn0_uP11U0VjWrXyvZ1A2B104DFiCliH2qHelDBtbZJBjtbdwGHNmk3JKOhHdBpC33btdE29YV4tesuZf6xIa3-lCniOIYJ5428tc4AixsmX_xD3s5bmdictx1obfnXGLrcoWMY0ecpzWsJkdeAp_PTMGWuX9VNo41rNPCA2gdimYkKJr-UfArlzivw54D8HpDngPw5IH_2_PLeSSAOIZUwxUx_BrXRrWJ95vTOEbemI5a_jv8v_gv3N58l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>870228161</pqid></control><display><type>article</type><title>Scaling parameters of bubbles and drops; interpretation and case study with air in silicon oil</title><source>Springer Nature - Complete Springer Journals</source><creator>Peters, Franz ; Gaertner, Björn</creator><creatorcontrib>Peters, Franz ; Gaertner, Björn</creatorcontrib><description>Buoyancy-driven bubbles and drops are deformable and exhibit different boundaries from mobile to immobile. Owing to the complexity of these flows, the literature knows various scaling parameters for their description. This paper determines a set of parameters on the basis of the force balance equations. It identifies the Archimedes number as the leading parameter while the Reynolds number is considered a flow variable. This ordering scheme of parameters is applied to a set of new data on bubbles rising in five different silicon oils. Data representation and limiting cases come out consistently. The use of the Archimedes number leads even to a successful simple model for the normalized rise velocity.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-010-0431-5</identifier><identifier>CODEN: AMHCAP</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Analysis ; Boundaries ; Bubbles ; Buoyancy ; Case studies ; Classical and Continuum Physics ; Computational fluid dynamics ; Constraining ; Control ; Drops and bubbles ; Dynamical Systems ; Engineering ; Engineering Thermodynamics ; Exact sciences and technology ; Flow velocity ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Heat and Mass Transfer ; Mathematical analysis ; Mathematical models ; Nonhomogeneous flows ; Physics ; Reynolds number ; Silicon ; Solid Mechanics ; Theoretical and Applied Mechanics ; Vibration</subject><ispartof>Acta mechanica, 2011-07, Vol.219 (3-4), p.189-202</ispartof><rights>Springer-Verlag 2011</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2011 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-8b3500825508ecefceba39e2d1a9685f4e7837aed6f29df4206de9280b676c853</citedby><cites>FETCH-LOGICAL-c416t-8b3500825508ecefceba39e2d1a9685f4e7837aed6f29df4206de9280b676c853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-010-0431-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-010-0431-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24261524$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Peters, Franz</creatorcontrib><creatorcontrib>Gaertner, Björn</creatorcontrib><title>Scaling parameters of bubbles and drops; interpretation and case study with air in silicon oil</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>Buoyancy-driven bubbles and drops are deformable and exhibit different boundaries from mobile to immobile. Owing to the complexity of these flows, the literature knows various scaling parameters for their description. This paper determines a set of parameters on the basis of the force balance equations. It identifies the Archimedes number as the leading parameter while the Reynolds number is considered a flow variable. This ordering scheme of parameters is applied to a set of new data on bubbles rising in five different silicon oils. Data representation and limiting cases come out consistently. The use of the Archimedes number leads even to a successful simple model for the normalized rise velocity.</description><subject>Analysis</subject><subject>Boundaries</subject><subject>Bubbles</subject><subject>Buoyancy</subject><subject>Case studies</subject><subject>Classical and Continuum Physics</subject><subject>Computational fluid dynamics</subject><subject>Constraining</subject><subject>Control</subject><subject>Drops and bubbles</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Exact sciences and technology</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat and Mass Transfer</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonhomogeneous flows</subject><subject>Physics</subject><subject>Reynolds number</subject><subject>Silicon</subject><subject>Solid Mechanics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kV-L1TAQxYMoeF39AL4FQXzqOknTNsGnZfEfLPigvhrSdHLN0tvWTIvst3euXRQECSRk5jeHkxwhniu4VADda-INugoUVGBqVTUPxEG1ylWtq7uH4gAAXHQdPBZPiG75pjujDuLb5xjGPB3lEko44YqF5Jxkv_X9iCTDNMihzAu9kXni5lJwDWuep9-dGAglrdtwJ3_m9bsMuTAmKY85MjLn8al4lMJI-Oz-vBBf3739cv2huvn0_uP11U0VjWrXyvZ1A2B104DFiCliH2qHelDBtbZJBjtbdwGHNmk3JKOhHdBpC33btdE29YV4tesuZf6xIa3-lCniOIYJ5428tc4AixsmX_xD3s5bmdictx1obfnXGLrcoWMY0ecpzWsJkdeAp_PTMGWuX9VNo41rNPCA2gdimYkKJr-UfArlzivw54D8HpDngPw5IH_2_PLeSSAOIZUwxUx_BrXRrWJ95vTOEbemI5a_jv8v_gv3N58l</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Peters, Franz</creator><creator>Gaertner, Björn</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20110701</creationdate><title>Scaling parameters of bubbles and drops; interpretation and case study with air in silicon oil</title><author>Peters, Franz ; Gaertner, Björn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-8b3500825508ecefceba39e2d1a9685f4e7837aed6f29df4206de9280b676c853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis</topic><topic>Boundaries</topic><topic>Bubbles</topic><topic>Buoyancy</topic><topic>Case studies</topic><topic>Classical and Continuum Physics</topic><topic>Computational fluid dynamics</topic><topic>Constraining</topic><topic>Control</topic><topic>Drops and bubbles</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Exact sciences and technology</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat and Mass Transfer</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonhomogeneous flows</topic><topic>Physics</topic><topic>Reynolds number</topic><topic>Silicon</topic><topic>Solid Mechanics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peters, Franz</creatorcontrib><creatorcontrib>Gaertner, Björn</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peters, Franz</au><au>Gaertner, Björn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling parameters of bubbles and drops; interpretation and case study with air in silicon oil</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>219</volume><issue>3-4</issue><spage>189</spage><epage>202</epage><pages>189-202</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><coden>AMHCAP</coden><abstract>Buoyancy-driven bubbles and drops are deformable and exhibit different boundaries from mobile to immobile. Owing to the complexity of these flows, the literature knows various scaling parameters for their description. This paper determines a set of parameters on the basis of the force balance equations. It identifies the Archimedes number as the leading parameter while the Reynolds number is considered a flow variable. This ordering scheme of parameters is applied to a set of new data on bubbles rising in five different silicon oils. Data representation and limiting cases come out consistently. The use of the Archimedes number leads even to a successful simple model for the normalized rise velocity.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-010-0431-5</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-5970
ispartof Acta mechanica, 2011-07, Vol.219 (3-4), p.189-202
issn 0001-5970
1619-6937
language eng
recordid cdi_proquest_miscellaneous_889405084
source Springer Nature - Complete Springer Journals
subjects Analysis
Boundaries
Bubbles
Buoyancy
Case studies
Classical and Continuum Physics
Computational fluid dynamics
Constraining
Control
Drops and bubbles
Dynamical Systems
Engineering
Engineering Thermodynamics
Exact sciences and technology
Flow velocity
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Heat and Mass Transfer
Mathematical analysis
Mathematical models
Nonhomogeneous flows
Physics
Reynolds number
Silicon
Solid Mechanics
Theoretical and Applied Mechanics
Vibration
title Scaling parameters of bubbles and drops; interpretation and case study with air in silicon oil
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A01%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20parameters%20of%20bubbles%20and%20drops;%20interpretation%20and%20case%20study%20with%20air%20in%20silicon%20oil&rft.jtitle=Acta%20mechanica&rft.au=Peters,%20Franz&rft.date=2011-07-01&rft.volume=219&rft.issue=3-4&rft.spage=189&rft.epage=202&rft.pages=189-202&rft.issn=0001-5970&rft.eissn=1619-6937&rft.coden=AMHCAP&rft_id=info:doi/10.1007/s00707-010-0431-5&rft_dat=%3Cgale_proqu%3EA355249520%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=870228161&rft_id=info:pmid/&rft_galeid=A355249520&rfr_iscdi=true