Realization of a gravity-resonance-spectroscopy technique

Spectroscopic techniques are mostly used to study the interaction between matter and electromagnetic fields. Here, an experiment that probes the transitions between quantum states of neutrons in the Earth’s gravitational field demonstrates an exotic variant of spectroscopy, and one that might lead t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2011-06, Vol.7 (6), p.468-472
Hauptverfasser: Jenke, Tobias, Geltenbort, Peter, Lemmel, Hartmut, Abele, Hartmut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 472
container_issue 6
container_start_page 468
container_title Nature physics
container_volume 7
creator Jenke, Tobias
Geltenbort, Peter
Lemmel, Hartmut
Abele, Hartmut
description Spectroscopic techniques are mostly used to study the interaction between matter and electromagnetic fields. Here, an experiment that probes the transitions between quantum states of neutrons in the Earth’s gravitational field demonstrates an exotic variant of spectroscopy, and one that might lead to sensitive fundamental tests of gravity laws. Spectroscopy is a method typically used to assess an unknown quantity of energy by means of a frequency measurement. In many problems, resonance techniques 1 , 2 enable high-precision measurements, but the observables have generally been restricted to electromagnetic interactions. Here we report the application of resonance spectroscopy to gravity. In contrast to previous resonance methods, the quantum mechanical transition is driven by an oscillating field that does not directly couple an electromagnetic charge or moment to an electromagnetic field. Instead, we observe transitions between gravitational quantum states when the wave packet of an ultra-cold neutron couples to the modulation of a hard surface as the driving force. The experiments have the potential to test the equivalence principle 3 and Newton’s gravity law at the micrometre scale 4 , 5 .
doi_str_mv 10.1038/nphys1970
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889403018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2363910761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-9e56b8804e9b94b8fa50a2f6744eed127d8f0fd46fa86ac62d60d5cfe9b68eff3</originalsourceid><addsrcrecordid>eNpl0MtKxDAUBuAgCo6jC9-guBGFatKmabKUwRsMCKLrkKYnMx06SU1aoT69GSoj6Oqcxcd_LgidE3xDcM5vbbceAxElPkAzUtIizSgnh_u-zI_RSQgbjGnGSD5D4hVU23ypvnE2cSZRycqrz6YfUw_BWWU1pKED3XsXtOvGpAe9ts3HAKfoyKg2wNlPnaP3h_u3xVO6fHl8XtwtU00z2qcCClZxjimIStCKG1VglRlWUgpQk6ysucGmpswozpRmWc1wXWgTOeNgTD5Hl1Nu510cG3q5bYKGtlUW3BAk54LiHBMe5cUfuXGDt3E5yZlgOeHlDl1NSMeLggcjO99slR8lwXL3Qrl_YbTXkw3R2BX438D_-BtJIXQT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869631878</pqid></control><display><type>article</type><title>Realization of a gravity-resonance-spectroscopy technique</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Jenke, Tobias ; Geltenbort, Peter ; Lemmel, Hartmut ; Abele, Hartmut</creator><creatorcontrib>Jenke, Tobias ; Geltenbort, Peter ; Lemmel, Hartmut ; Abele, Hartmut</creatorcontrib><description>Spectroscopic techniques are mostly used to study the interaction between matter and electromagnetic fields. Here, an experiment that probes the transitions between quantum states of neutrons in the Earth’s gravitational field demonstrates an exotic variant of spectroscopy, and one that might lead to sensitive fundamental tests of gravity laws. Spectroscopy is a method typically used to assess an unknown quantity of energy by means of a frequency measurement. In many problems, resonance techniques 1 , 2 enable high-precision measurements, but the observables have generally been restricted to electromagnetic interactions. Here we report the application of resonance spectroscopy to gravity. In contrast to previous resonance methods, the quantum mechanical transition is driven by an oscillating field that does not directly couple an electromagnetic charge or moment to an electromagnetic field. Instead, we observe transitions between gravitational quantum states when the wave packet of an ultra-cold neutron couples to the modulation of a hard surface as the driving force. The experiments have the potential to test the equivalence principle 3 and Newton’s gravity law at the micrometre scale 4 , 5 .</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys1970</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Couples ; Electromagnetic fields ; Energy use ; Equivalence principle ; Gravitation ; Gravity ; letter ; Mathematical and Computational Physics ; Modulation ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Quantum mechanics ; Resonance ; Spectroscopy ; Spectrum analysis ; Theoretical</subject><ispartof>Nature physics, 2011-06, Vol.7 (6), p.468-472</ispartof><rights>Springer Nature Limited 2011</rights><rights>Copyright Nature Publishing Group Jun 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-9e56b8804e9b94b8fa50a2f6744eed127d8f0fd46fa86ac62d60d5cfe9b68eff3</citedby><cites>FETCH-LOGICAL-c424t-9e56b8804e9b94b8fa50a2f6744eed127d8f0fd46fa86ac62d60d5cfe9b68eff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jenke, Tobias</creatorcontrib><creatorcontrib>Geltenbort, Peter</creatorcontrib><creatorcontrib>Lemmel, Hartmut</creatorcontrib><creatorcontrib>Abele, Hartmut</creatorcontrib><title>Realization of a gravity-resonance-spectroscopy technique</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Spectroscopic techniques are mostly used to study the interaction between matter and electromagnetic fields. Here, an experiment that probes the transitions between quantum states of neutrons in the Earth’s gravitational field demonstrates an exotic variant of spectroscopy, and one that might lead to sensitive fundamental tests of gravity laws. Spectroscopy is a method typically used to assess an unknown quantity of energy by means of a frequency measurement. In many problems, resonance techniques 1 , 2 enable high-precision measurements, but the observables have generally been restricted to electromagnetic interactions. Here we report the application of resonance spectroscopy to gravity. In contrast to previous resonance methods, the quantum mechanical transition is driven by an oscillating field that does not directly couple an electromagnetic charge or moment to an electromagnetic field. Instead, we observe transitions between gravitational quantum states when the wave packet of an ultra-cold neutron couples to the modulation of a hard surface as the driving force. The experiments have the potential to test the equivalence principle 3 and Newton’s gravity law at the micrometre scale 4 , 5 .</description><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Couples</subject><subject>Electromagnetic fields</subject><subject>Energy use</subject><subject>Equivalence principle</subject><subject>Gravitation</subject><subject>Gravity</subject><subject>letter</subject><subject>Mathematical and Computational Physics</subject><subject>Modulation</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum mechanics</subject><subject>Resonance</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0MtKxDAUBuAgCo6jC9-guBGFatKmabKUwRsMCKLrkKYnMx06SU1aoT69GSoj6Oqcxcd_LgidE3xDcM5vbbceAxElPkAzUtIizSgnh_u-zI_RSQgbjGnGSD5D4hVU23ypvnE2cSZRycqrz6YfUw_BWWU1pKED3XsXtOvGpAe9ts3HAKfoyKg2wNlPnaP3h_u3xVO6fHl8XtwtU00z2qcCClZxjimIStCKG1VglRlWUgpQk6ysucGmpswozpRmWc1wXWgTOeNgTD5Hl1Nu510cG3q5bYKGtlUW3BAk54LiHBMe5cUfuXGDt3E5yZlgOeHlDl1NSMeLggcjO99slR8lwXL3Qrl_YbTXkw3R2BX438D_-BtJIXQT</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Jenke, Tobias</creator><creator>Geltenbort, Peter</creator><creator>Lemmel, Hartmut</creator><creator>Abele, Hartmut</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20110601</creationdate><title>Realization of a gravity-resonance-spectroscopy technique</title><author>Jenke, Tobias ; Geltenbort, Peter ; Lemmel, Hartmut ; Abele, Hartmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-9e56b8804e9b94b8fa50a2f6744eed127d8f0fd46fa86ac62d60d5cfe9b68eff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Couples</topic><topic>Electromagnetic fields</topic><topic>Energy use</topic><topic>Equivalence principle</topic><topic>Gravitation</topic><topic>Gravity</topic><topic>letter</topic><topic>Mathematical and Computational Physics</topic><topic>Modulation</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum mechanics</topic><topic>Resonance</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jenke, Tobias</creatorcontrib><creatorcontrib>Geltenbort, Peter</creatorcontrib><creatorcontrib>Lemmel, Hartmut</creatorcontrib><creatorcontrib>Abele, Hartmut</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jenke, Tobias</au><au>Geltenbort, Peter</au><au>Lemmel, Hartmut</au><au>Abele, Hartmut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realization of a gravity-resonance-spectroscopy technique</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2011-06-01</date><risdate>2011</risdate><volume>7</volume><issue>6</issue><spage>468</spage><epage>472</epage><pages>468-472</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Spectroscopic techniques are mostly used to study the interaction between matter and electromagnetic fields. Here, an experiment that probes the transitions between quantum states of neutrons in the Earth’s gravitational field demonstrates an exotic variant of spectroscopy, and one that might lead to sensitive fundamental tests of gravity laws. Spectroscopy is a method typically used to assess an unknown quantity of energy by means of a frequency measurement. In many problems, resonance techniques 1 , 2 enable high-precision measurements, but the observables have generally been restricted to electromagnetic interactions. Here we report the application of resonance spectroscopy to gravity. In contrast to previous resonance methods, the quantum mechanical transition is driven by an oscillating field that does not directly couple an electromagnetic charge or moment to an electromagnetic field. Instead, we observe transitions between gravitational quantum states when the wave packet of an ultra-cold neutron couples to the modulation of a hard surface as the driving force. The experiments have the potential to test the equivalence principle 3 and Newton’s gravity law at the micrometre scale 4 , 5 .</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys1970</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2011-06, Vol.7 (6), p.468-472
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_miscellaneous_889403018
source Nature; Alma/SFX Local Collection
subjects Atomic
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Couples
Electromagnetic fields
Energy use
Equivalence principle
Gravitation
Gravity
letter
Mathematical and Computational Physics
Modulation
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Quantum mechanics
Resonance
Spectroscopy
Spectrum analysis
Theoretical
title Realization of a gravity-resonance-spectroscopy technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A40%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realization%20of%20a%20gravity-resonance-spectroscopy%20technique&rft.jtitle=Nature%20physics&rft.au=Jenke,%20Tobias&rft.date=2011-06-01&rft.volume=7&rft.issue=6&rft.spage=468&rft.epage=472&rft.pages=468-472&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys1970&rft_dat=%3Cproquest_cross%3E2363910761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869631878&rft_id=info:pmid/&rfr_iscdi=true