Learning Choquet-Integral-Based Metrics for Semisupervised Clustering

We consider an application of fuzzy measures to the problem of metric learning in semisupervised clustering. We investigate the necessary and sufficient conditions on the underlying fuzzy measure that make the discrete Choquet integral suitable for defining a metric. As a byproduct, we can obtain th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2011-06, Vol.19 (3), p.562-574
Hauptverfasser: Beliakov, G, James, S, Gang Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 574
container_issue 3
container_start_page 562
container_title IEEE transactions on fuzzy systems
container_volume 19
creator Beliakov, G
James, S
Gang Li
description We consider an application of fuzzy measures to the problem of metric learning in semisupervised clustering. We investigate the necessary and sufficient conditions on the underlying fuzzy measure that make the discrete Choquet integral suitable for defining a metric. As a byproduct, we can obtain the analogous conditions for the ordered-weighted-averaging (OWA) operators, which constitute a special case. We then generalize these results for power-based Choquet and OWA operators. We show that this metric-learning problem can be formulated as a linear-programming problem and specify the required sets of linear constraints. We present the results of numerical experiments on artificial- and real-world datasets, which illustrate the potential, usefulness, and limitations of this construction.
doi_str_mv 10.1109/TFUZZ.2011.2123899
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_889400009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5725180</ieee_id><sourcerecordid>2556616531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-b67def15c3e0ce9d692445c6b85c717a35aba0011b5f04607bf8595c3ba8a6b33</originalsourceid><addsrcrecordid>eNpdkL1OwzAURi0EEqXwArBELEwp_o89QtRCpSIG2qWL5bg3JVWaFDtB4u1xKGLAy7V0z3f16SB0TfCEEKzvl7PVej2hmJAJJZQprU_QiGhOUowZP41_LFkqMyzP0UUIO4wJF0SN0HQB1jdVs03y9_ajhy6dNx1sva3TRxtgk7xA5ysXkrL1yRvsq9AfwH9Wwyqv-9CBj-FLdFbaOsDV7xyj1Wy6zJ_TxevTPH9YpI5R2aWFzDZQEuEYYAd6IzXlXDhZKOEyklkmbGFjNVKIEnOJs6JUQke8sMrKgrExujvePfihbOhMLOSgrm0DbR-MUprj-HQkb_-Ru7b3TSxnNOGZpETRCNEj5HwbgofSHHy1t_7LEGwGr-bHqxm8ml-vMXRzDFUA8BcQGY0-MfsGR0Bz_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914762182</pqid></control><display><type>article</type><title>Learning Choquet-Integral-Based Metrics for Semisupervised Clustering</title><source>IEEE Electronic Library (IEL)</source><creator>Beliakov, G ; James, S ; Gang Li</creator><creatorcontrib>Beliakov, G ; James, S ; Gang Li</creatorcontrib><description>We consider an application of fuzzy measures to the problem of metric learning in semisupervised clustering. We investigate the necessary and sufficient conditions on the underlying fuzzy measure that make the discrete Choquet integral suitable for defining a metric. As a byproduct, we can obtain the analogous conditions for the ordered-weighted-averaging (OWA) operators, which constitute a special case. We then generalize these results for power-based Choquet and OWA operators. We show that this metric-learning problem can be formulated as a linear-programming problem and specify the required sets of linear constraints. We present the results of numerical experiments on artificial- and real-world datasets, which illustrate the potential, usefulness, and limitations of this construction.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2011.2123899</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Additives ; Byproducts ; Choquet integral ; Clustering ; Context ; Fuzzy ; fuzzy c-means (FCM) ; Fuzzy logic ; fuzzy measure ; Fuzzy set theory ; Indexes ; Integrals ; Learning ; Linear programming ; Measurement ; metric learning ; Open wireless architecture ; Operators ; ordered-weighted averaging (OWA) ; Silicon</subject><ispartof>IEEE transactions on fuzzy systems, 2011-06, Vol.19 (3), p.562-574</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-b67def15c3e0ce9d692445c6b85c717a35aba0011b5f04607bf8595c3ba8a6b33</citedby><cites>FETCH-LOGICAL-c326t-b67def15c3e0ce9d692445c6b85c717a35aba0011b5f04607bf8595c3ba8a6b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5725180$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5725180$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Beliakov, G</creatorcontrib><creatorcontrib>James, S</creatorcontrib><creatorcontrib>Gang Li</creatorcontrib><title>Learning Choquet-Integral-Based Metrics for Semisupervised Clustering</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>We consider an application of fuzzy measures to the problem of metric learning in semisupervised clustering. We investigate the necessary and sufficient conditions on the underlying fuzzy measure that make the discrete Choquet integral suitable for defining a metric. As a byproduct, we can obtain the analogous conditions for the ordered-weighted-averaging (OWA) operators, which constitute a special case. We then generalize these results for power-based Choquet and OWA operators. We show that this metric-learning problem can be formulated as a linear-programming problem and specify the required sets of linear constraints. We present the results of numerical experiments on artificial- and real-world datasets, which illustrate the potential, usefulness, and limitations of this construction.</description><subject>Additives</subject><subject>Byproducts</subject><subject>Choquet integral</subject><subject>Clustering</subject><subject>Context</subject><subject>Fuzzy</subject><subject>fuzzy c-means (FCM)</subject><subject>Fuzzy logic</subject><subject>fuzzy measure</subject><subject>Fuzzy set theory</subject><subject>Indexes</subject><subject>Integrals</subject><subject>Learning</subject><subject>Linear programming</subject><subject>Measurement</subject><subject>metric learning</subject><subject>Open wireless architecture</subject><subject>Operators</subject><subject>ordered-weighted averaging (OWA)</subject><subject>Silicon</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkL1OwzAURi0EEqXwArBELEwp_o89QtRCpSIG2qWL5bg3JVWaFDtB4u1xKGLAy7V0z3f16SB0TfCEEKzvl7PVej2hmJAJJZQprU_QiGhOUowZP41_LFkqMyzP0UUIO4wJF0SN0HQB1jdVs03y9_ajhy6dNx1sva3TRxtgk7xA5ysXkrL1yRvsq9AfwH9Wwyqv-9CBj-FLdFbaOsDV7xyj1Wy6zJ_TxevTPH9YpI5R2aWFzDZQEuEYYAd6IzXlXDhZKOEyklkmbGFjNVKIEnOJs6JUQke8sMrKgrExujvePfihbOhMLOSgrm0DbR-MUprj-HQkb_-Ru7b3TSxnNOGZpETRCNEj5HwbgofSHHy1t_7LEGwGr-bHqxm8ml-vMXRzDFUA8BcQGY0-MfsGR0Bz_g</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Beliakov, G</creator><creator>James, S</creator><creator>Gang Li</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201106</creationdate><title>Learning Choquet-Integral-Based Metrics for Semisupervised Clustering</title><author>Beliakov, G ; James, S ; Gang Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-b67def15c3e0ce9d692445c6b85c717a35aba0011b5f04607bf8595c3ba8a6b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Additives</topic><topic>Byproducts</topic><topic>Choquet integral</topic><topic>Clustering</topic><topic>Context</topic><topic>Fuzzy</topic><topic>fuzzy c-means (FCM)</topic><topic>Fuzzy logic</topic><topic>fuzzy measure</topic><topic>Fuzzy set theory</topic><topic>Indexes</topic><topic>Integrals</topic><topic>Learning</topic><topic>Linear programming</topic><topic>Measurement</topic><topic>metric learning</topic><topic>Open wireless architecture</topic><topic>Operators</topic><topic>ordered-weighted averaging (OWA)</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beliakov, G</creatorcontrib><creatorcontrib>James, S</creatorcontrib><creatorcontrib>Gang Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Beliakov, G</au><au>James, S</au><au>Gang Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Choquet-Integral-Based Metrics for Semisupervised Clustering</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2011-06</date><risdate>2011</risdate><volume>19</volume><issue>3</issue><spage>562</spage><epage>574</epage><pages>562-574</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>We consider an application of fuzzy measures to the problem of metric learning in semisupervised clustering. We investigate the necessary and sufficient conditions on the underlying fuzzy measure that make the discrete Choquet integral suitable for defining a metric. As a byproduct, we can obtain the analogous conditions for the ordered-weighted-averaging (OWA) operators, which constitute a special case. We then generalize these results for power-based Choquet and OWA operators. We show that this metric-learning problem can be formulated as a linear-programming problem and specify the required sets of linear constraints. We present the results of numerical experiments on artificial- and real-world datasets, which illustrate the potential, usefulness, and limitations of this construction.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2011.2123899</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2011-06, Vol.19 (3), p.562-574
issn 1063-6706
1941-0034
language eng
recordid cdi_proquest_miscellaneous_889400009
source IEEE Electronic Library (IEL)
subjects Additives
Byproducts
Choquet integral
Clustering
Context
Fuzzy
fuzzy c-means (FCM)
Fuzzy logic
fuzzy measure
Fuzzy set theory
Indexes
Integrals
Learning
Linear programming
Measurement
metric learning
Open wireless architecture
Operators
ordered-weighted averaging (OWA)
Silicon
title Learning Choquet-Integral-Based Metrics for Semisupervised Clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A16%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Choquet-Integral-Based%20Metrics%20for%20Semisupervised%20Clustering&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Beliakov,%20G&rft.date=2011-06&rft.volume=19&rft.issue=3&rft.spage=562&rft.epage=574&rft.pages=562-574&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2011.2123899&rft_dat=%3Cproquest_RIE%3E2556616531%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914762182&rft_id=info:pmid/&rft_ieee_id=5725180&rfr_iscdi=true