Oxide growth and damage evolution in thermal barrier coatings

► Cracks in TBCs nucleate primarily at the current interface between the bond coat and the thermally-grown oxide layer. ► Crack nucleation is triggered by interfacial irregularities of the thermally-grown oxide layer. ► The fracture strength of the top coat is a critical parameter for designing agai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering fracture mechanics 2011-07, Vol.78 (10), p.2139-2152
Hauptverfasser: Hille, T.S., Turteltaub, S., Suiker, A.S.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2152
container_issue 10
container_start_page 2139
container_title Engineering fracture mechanics
container_volume 78
creator Hille, T.S.
Turteltaub, S.
Suiker, A.S.J.
description ► Cracks in TBCs nucleate primarily at the current interface between the bond coat and the thermally-grown oxide layer. ► Crack nucleation is triggered by interfacial irregularities of the thermally-grown oxide layer. ► The fracture strength of the top coat is a critical parameter for designing against catastrophic failure of the TBC. Cracking in thermal barrier coatings (TBC) is triggered by the development of a thermally-grown oxide (TGO) layer that develops during thermal cycling from the oxidation of aluminum present in the bond coat (BC). In the present communication a numerical model is presented that describes the interactive development of the TGO morphology and the fracture processes in TBC systems in a mesh-independent way. The evolution of the TGO–BC mixture zone is described by an oxygen diffusion–reaction model. The partition-of-unity method is employed for the simulation of discrete cracking, where cracks can nucleate and propagate across finite elements at arbitrary locations and orientations. The validity of the model is demonstrated through the analysis of a representative TBC system subjected to a specific thermal cycling process. A parametric analysis demonstrates the sensitivity of the response of the TBC system to the fracture strength of the top coat. The simulation results indicate that cracks appear primarily at the current location of the BC–TGO interface and may nucleate at early stages of thermal cycling. These results are in good agreement with recent experimental observations reported in the literature.
doi_str_mv 10.1016/j.engfracmech.2011.04.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889397900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794411001421</els_id><sourcerecordid>889397900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-6b7f61118aa343f7a8d7c3a88bc9903e48db3180d3f9fbc4e0d25bc40d37c7723</originalsourceid><addsrcrecordid>eNqNUMtOwzAQtBBIlMI_hAPilLCO09g-cEAVL6lSL3C2HHuTusqj2GmBv8dVK8SR06xW89AMIdcUMgq0vFtn2De116ZDs8pyoDSDIgNgJ2RCBWcpZ3R2SiYANN6yKM7JRQhrAOClgAm5X345i0njh89xlejeJlZ3usEEd0O7Hd3QJ65PxhX6TrdJpb136BMz6NH1TbgkZ7VuA14dcUrenx7f5i_pYvn8On9YpIYJNqZlxeuSUiq0ZgWruRaWG6aFqIyUwLAQtmJUgGW1rCtTINh8FjE-uOE8Z1Nye_Dd-OFji2FUnQsG21b3OGyDEkIyyWWsPSXywDR-CMFjrTbeddp_Kwpqv5haqz-Lqf1iCgoVpVF7c0zRweg2cnrjwq9BXuS8lPmeNz_wMFbexT1UMA57g9Z5NKOyg_tH2g8WKIdI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889397900</pqid></control><display><type>article</type><title>Oxide growth and damage evolution in thermal barrier coatings</title><source>Elsevier ScienceDirect Journals</source><creator>Hille, T.S. ; Turteltaub, S. ; Suiker, A.S.J.</creator><creatorcontrib>Hille, T.S. ; Turteltaub, S. ; Suiker, A.S.J.</creatorcontrib><description>► Cracks in TBCs nucleate primarily at the current interface between the bond coat and the thermally-grown oxide layer. ► Crack nucleation is triggered by interfacial irregularities of the thermally-grown oxide layer. ► The fracture strength of the top coat is a critical parameter for designing against catastrophic failure of the TBC. Cracking in thermal barrier coatings (TBC) is triggered by the development of a thermally-grown oxide (TGO) layer that develops during thermal cycling from the oxidation of aluminum present in the bond coat (BC). In the present communication a numerical model is presented that describes the interactive development of the TGO morphology and the fracture processes in TBC systems in a mesh-independent way. The evolution of the TGO–BC mixture zone is described by an oxygen diffusion–reaction model. The partition-of-unity method is employed for the simulation of discrete cracking, where cracks can nucleate and propagate across finite elements at arbitrary locations and orientations. The validity of the model is demonstrated through the analysis of a representative TBC system subjected to a specific thermal cycling process. A parametric analysis demonstrates the sensitivity of the response of the TBC system to the fracture strength of the top coat. The simulation results indicate that cracks appear primarily at the current location of the BC–TGO interface and may nucleate at early stages of thermal cycling. These results are in good agreement with recent experimental observations reported in the literature.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2011.04.003</identifier><identifier>CODEN: EFMEAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Classical transport ; Coating ; Cohesive law ; Computer simulation ; Cracking (fracturing) ; Exact sciences and technology ; Fracture mechanics ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Mathematical models ; Multi-physics ; Oxide growth ; Oxides ; Partition-of-unity method ; Physics ; Solid mechanics ; Statistical physics, thermodynamics, and nonlinear dynamical systems ; Structural and continuum mechanics ; TBC systems ; Thermal barrier coatings ; Thermal cycling ; Transport processes</subject><ispartof>Engineering fracture mechanics, 2011-07, Vol.78 (10), p.2139-2152</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-6b7f61118aa343f7a8d7c3a88bc9903e48db3180d3f9fbc4e0d25bc40d37c7723</citedby><cites>FETCH-LOGICAL-c383t-6b7f61118aa343f7a8d7c3a88bc9903e48db3180d3f9fbc4e0d25bc40d37c7723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.engfracmech.2011.04.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24276923$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hille, T.S.</creatorcontrib><creatorcontrib>Turteltaub, S.</creatorcontrib><creatorcontrib>Suiker, A.S.J.</creatorcontrib><title>Oxide growth and damage evolution in thermal barrier coatings</title><title>Engineering fracture mechanics</title><description>► Cracks in TBCs nucleate primarily at the current interface between the bond coat and the thermally-grown oxide layer. ► Crack nucleation is triggered by interfacial irregularities of the thermally-grown oxide layer. ► The fracture strength of the top coat is a critical parameter for designing against catastrophic failure of the TBC. Cracking in thermal barrier coatings (TBC) is triggered by the development of a thermally-grown oxide (TGO) layer that develops during thermal cycling from the oxidation of aluminum present in the bond coat (BC). In the present communication a numerical model is presented that describes the interactive development of the TGO morphology and the fracture processes in TBC systems in a mesh-independent way. The evolution of the TGO–BC mixture zone is described by an oxygen diffusion–reaction model. The partition-of-unity method is employed for the simulation of discrete cracking, where cracks can nucleate and propagate across finite elements at arbitrary locations and orientations. The validity of the model is demonstrated through the analysis of a representative TBC system subjected to a specific thermal cycling process. A parametric analysis demonstrates the sensitivity of the response of the TBC system to the fracture strength of the top coat. The simulation results indicate that cracks appear primarily at the current location of the BC–TGO interface and may nucleate at early stages of thermal cycling. These results are in good agreement with recent experimental observations reported in the literature.</description><subject>Classical transport</subject><subject>Coating</subject><subject>Cohesive law</subject><subject>Computer simulation</subject><subject>Cracking (fracturing)</subject><subject>Exact sciences and technology</subject><subject>Fracture mechanics</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical models</subject><subject>Multi-physics</subject><subject>Oxide growth</subject><subject>Oxides</subject><subject>Partition-of-unity method</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><subject>Structural and continuum mechanics</subject><subject>TBC systems</subject><subject>Thermal barrier coatings</subject><subject>Thermal cycling</subject><subject>Transport processes</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNUMtOwzAQtBBIlMI_hAPilLCO09g-cEAVL6lSL3C2HHuTusqj2GmBv8dVK8SR06xW89AMIdcUMgq0vFtn2De116ZDs8pyoDSDIgNgJ2RCBWcpZ3R2SiYANN6yKM7JRQhrAOClgAm5X345i0njh89xlejeJlZ3usEEd0O7Hd3QJ65PxhX6TrdJpb136BMz6NH1TbgkZ7VuA14dcUrenx7f5i_pYvn8On9YpIYJNqZlxeuSUiq0ZgWruRaWG6aFqIyUwLAQtmJUgGW1rCtTINh8FjE-uOE8Z1Nye_Dd-OFji2FUnQsG21b3OGyDEkIyyWWsPSXywDR-CMFjrTbeddp_Kwpqv5haqz-Lqf1iCgoVpVF7c0zRweg2cnrjwq9BXuS8lPmeNz_wMFbexT1UMA57g9Z5NKOyg_tH2g8WKIdI</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Hille, T.S.</creator><creator>Turteltaub, S.</creator><creator>Suiker, A.S.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20110701</creationdate><title>Oxide growth and damage evolution in thermal barrier coatings</title><author>Hille, T.S. ; Turteltaub, S. ; Suiker, A.S.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-6b7f61118aa343f7a8d7c3a88bc9903e48db3180d3f9fbc4e0d25bc40d37c7723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Classical transport</topic><topic>Coating</topic><topic>Cohesive law</topic><topic>Computer simulation</topic><topic>Cracking (fracturing)</topic><topic>Exact sciences and technology</topic><topic>Fracture mechanics</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical models</topic><topic>Multi-physics</topic><topic>Oxide growth</topic><topic>Oxides</topic><topic>Partition-of-unity method</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><topic>Structural and continuum mechanics</topic><topic>TBC systems</topic><topic>Thermal barrier coatings</topic><topic>Thermal cycling</topic><topic>Transport processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hille, T.S.</creatorcontrib><creatorcontrib>Turteltaub, S.</creatorcontrib><creatorcontrib>Suiker, A.S.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hille, T.S.</au><au>Turteltaub, S.</au><au>Suiker, A.S.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxide growth and damage evolution in thermal barrier coatings</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>78</volume><issue>10</issue><spage>2139</spage><epage>2152</epage><pages>2139-2152</pages><issn>0013-7944</issn><eissn>1873-7315</eissn><coden>EFMEAH</coden><abstract>► Cracks in TBCs nucleate primarily at the current interface between the bond coat and the thermally-grown oxide layer. ► Crack nucleation is triggered by interfacial irregularities of the thermally-grown oxide layer. ► The fracture strength of the top coat is a critical parameter for designing against catastrophic failure of the TBC. Cracking in thermal barrier coatings (TBC) is triggered by the development of a thermally-grown oxide (TGO) layer that develops during thermal cycling from the oxidation of aluminum present in the bond coat (BC). In the present communication a numerical model is presented that describes the interactive development of the TGO morphology and the fracture processes in TBC systems in a mesh-independent way. The evolution of the TGO–BC mixture zone is described by an oxygen diffusion–reaction model. The partition-of-unity method is employed for the simulation of discrete cracking, where cracks can nucleate and propagate across finite elements at arbitrary locations and orientations. The validity of the model is demonstrated through the analysis of a representative TBC system subjected to a specific thermal cycling process. A parametric analysis demonstrates the sensitivity of the response of the TBC system to the fracture strength of the top coat. The simulation results indicate that cracks appear primarily at the current location of the BC–TGO interface and may nucleate at early stages of thermal cycling. These results are in good agreement with recent experimental observations reported in the literature.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2011.04.003</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-7944
ispartof Engineering fracture mechanics, 2011-07, Vol.78 (10), p.2139-2152
issn 0013-7944
1873-7315
language eng
recordid cdi_proquest_miscellaneous_889397900
source Elsevier ScienceDirect Journals
subjects Classical transport
Coating
Cohesive law
Computer simulation
Cracking (fracturing)
Exact sciences and technology
Fracture mechanics
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
Mathematical models
Multi-physics
Oxide growth
Oxides
Partition-of-unity method
Physics
Solid mechanics
Statistical physics, thermodynamics, and nonlinear dynamical systems
Structural and continuum mechanics
TBC systems
Thermal barrier coatings
Thermal cycling
Transport processes
title Oxide growth and damage evolution in thermal barrier coatings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A20%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxide%20growth%20and%20damage%20evolution%20in%20thermal%20barrier%20coatings&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Hille,%20T.S.&rft.date=2011-07-01&rft.volume=78&rft.issue=10&rft.spage=2139&rft.epage=2152&rft.pages=2139-2152&rft.issn=0013-7944&rft.eissn=1873-7315&rft.coden=EFMEAH&rft_id=info:doi/10.1016/j.engfracmech.2011.04.003&rft_dat=%3Cproquest_cross%3E889397900%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889397900&rft_id=info:pmid/&rft_els_id=S0013794411001421&rfr_iscdi=true