Multiscale modelling of damage and failure in two-dimensional metallic foams
The fracture strength of metal foams depends sensitively on the properties of the constituent material as well as the cellular architecture. A change in microscopic properties carries over to the macroscopic scale through an alteration of the mesoscopic damage and fracture mechanisms. In this paper...
Gespeichert in:
Veröffentlicht in: | Journal of the mechanics and physics of solids 2011-07, Vol.59 (7), p.1437-1461 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1461 |
---|---|
container_issue | 7 |
container_start_page | 1437 |
container_title | Journal of the mechanics and physics of solids |
container_volume | 59 |
creator | Mangipudi, K.R. Onck, P.R. |
description | The fracture strength of metal foams depends sensitively on the properties of the constituent material as well as the cellular architecture. A change in microscopic properties carries over to the macroscopic scale through an alteration of the mesoscopic damage and fracture mechanisms. In this paper we study these dependencies using a modelling framework that takes all these ingredients into account. We have developed a micromechanical model based on a discrete Voronoi representation of cellular metals that incorporates power-law strain hardening and damage development of the cell wall material. The influence of the relative density and material strain hardening on the cell wall damage behavior and overall fracture response is analyzed in detail. The effect of the cellular architecture is studied by varying the cell shape anisotropy and structural randomness. We also simulate the effect of post-processing heat treatments on the solid material plastic and fracture properties and how this affects the overall fracture profile and damage development. Finally, all material and architectural effects are summarized in a strength versus ductility graph, identifying trends for improved design of metallic foams. |
doi_str_mv | 10.1016/j.jmps.2011.02.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889397405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022509611000366</els_id><sourcerecordid>889397405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-7581f406f57a44998628ca2916d1349201e6f1f69a2917458833808dc3e6f9683</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhbtQcHz8AVfZuWq9Sdo0ATcy-IIRN7oOIY8hpWnGpFX896aMa1cXDue7nHOq6hpDgwGz26EZwiE3BDBugDQA_KTaABBSdyDYWXWe8wAAHfR4U-1el3H2WavRohCNHUc_7VF0yKig9hapySCn_Lgki_yE5u9YGx_slH2c1IiCnVVBNHJRhXxZnTo1Znv1dy-qj8eH9-1zvXt7etne72pNKZnrvuPYtcBc16u2FYIzwrUiAjODaStKcMscdkysWt92nFPKgRtNiy4YpxfVzfHvIcXPxeZZhlKhZFeTjUuWnAsq-ha64iRHp04x52SdPCQfVPqRGOS6lhzkupZc15JAZFmrQHdHyJYOX94mmbW3k7bGJ6tnaaL_D_8Fmjx0GQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889397405</pqid></control><display><type>article</type><title>Multiscale modelling of damage and failure in two-dimensional metallic foams</title><source>Elsevier ScienceDirect Journals</source><creator>Mangipudi, K.R. ; Onck, P.R.</creator><creatorcontrib>Mangipudi, K.R. ; Onck, P.R.</creatorcontrib><description>The fracture strength of metal foams depends sensitively on the properties of the constituent material as well as the cellular architecture. A change in microscopic properties carries over to the macroscopic scale through an alteration of the mesoscopic damage and fracture mechanisms. In this paper we study these dependencies using a modelling framework that takes all these ingredients into account. We have developed a micromechanical model based on a discrete Voronoi representation of cellular metals that incorporates power-law strain hardening and damage development of the cell wall material. The influence of the relative density and material strain hardening on the cell wall damage behavior and overall fracture response is analyzed in detail. The effect of the cellular architecture is studied by varying the cell shape anisotropy and structural randomness. We also simulate the effect of post-processing heat treatments on the solid material plastic and fracture properties and how this affects the overall fracture profile and damage development. Finally, all material and architectural effects are summarized in a strength versus ductility graph, identifying trends for improved design of metallic foams.</description><identifier>ISSN: 0022-5096</identifier><identifier>DOI: 10.1016/j.jmps.2011.02.008</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Anisotropy ; Architecture ; Cellular ; Cellular solids ; Damage ; Damage accumulation ; Foamed metals ; Fracture mechanics ; Heat treatment ; Modelling ; Randomness ; Strain hardening ; Walls</subject><ispartof>Journal of the mechanics and physics of solids, 2011-07, Vol.59 (7), p.1437-1461</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-7581f406f57a44998628ca2916d1349201e6f1f69a2917458833808dc3e6f9683</citedby><cites>FETCH-LOGICAL-c332t-7581f406f57a44998628ca2916d1349201e6f1f69a2917458833808dc3e6f9683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmps.2011.02.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Mangipudi, K.R.</creatorcontrib><creatorcontrib>Onck, P.R.</creatorcontrib><title>Multiscale modelling of damage and failure in two-dimensional metallic foams</title><title>Journal of the mechanics and physics of solids</title><description>The fracture strength of metal foams depends sensitively on the properties of the constituent material as well as the cellular architecture. A change in microscopic properties carries over to the macroscopic scale through an alteration of the mesoscopic damage and fracture mechanisms. In this paper we study these dependencies using a modelling framework that takes all these ingredients into account. We have developed a micromechanical model based on a discrete Voronoi representation of cellular metals that incorporates power-law strain hardening and damage development of the cell wall material. The influence of the relative density and material strain hardening on the cell wall damage behavior and overall fracture response is analyzed in detail. The effect of the cellular architecture is studied by varying the cell shape anisotropy and structural randomness. We also simulate the effect of post-processing heat treatments on the solid material plastic and fracture properties and how this affects the overall fracture profile and damage development. Finally, all material and architectural effects are summarized in a strength versus ductility graph, identifying trends for improved design of metallic foams.</description><subject>Anisotropy</subject><subject>Architecture</subject><subject>Cellular</subject><subject>Cellular solids</subject><subject>Damage</subject><subject>Damage accumulation</subject><subject>Foamed metals</subject><subject>Fracture mechanics</subject><subject>Heat treatment</subject><subject>Modelling</subject><subject>Randomness</subject><subject>Strain hardening</subject><subject>Walls</subject><issn>0022-5096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhbtQcHz8AVfZuWq9Sdo0ATcy-IIRN7oOIY8hpWnGpFX896aMa1cXDue7nHOq6hpDgwGz26EZwiE3BDBugDQA_KTaABBSdyDYWXWe8wAAHfR4U-1el3H2WavRohCNHUc_7VF0yKig9hapySCn_Lgki_yE5u9YGx_slH2c1IiCnVVBNHJRhXxZnTo1Znv1dy-qj8eH9-1zvXt7etne72pNKZnrvuPYtcBc16u2FYIzwrUiAjODaStKcMscdkysWt92nFPKgRtNiy4YpxfVzfHvIcXPxeZZhlKhZFeTjUuWnAsq-ha64iRHp04x52SdPCQfVPqRGOS6lhzkupZc15JAZFmrQHdHyJYOX94mmbW3k7bGJ6tnaaL_D_8Fmjx0GQ</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Mangipudi, K.R.</creator><creator>Onck, P.R.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20110701</creationdate><title>Multiscale modelling of damage and failure in two-dimensional metallic foams</title><author>Mangipudi, K.R. ; Onck, P.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-7581f406f57a44998628ca2916d1349201e6f1f69a2917458833808dc3e6f9683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Anisotropy</topic><topic>Architecture</topic><topic>Cellular</topic><topic>Cellular solids</topic><topic>Damage</topic><topic>Damage accumulation</topic><topic>Foamed metals</topic><topic>Fracture mechanics</topic><topic>Heat treatment</topic><topic>Modelling</topic><topic>Randomness</topic><topic>Strain hardening</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mangipudi, K.R.</creatorcontrib><creatorcontrib>Onck, P.R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the mechanics and physics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mangipudi, K.R.</au><au>Onck, P.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale modelling of damage and failure in two-dimensional metallic foams</atitle><jtitle>Journal of the mechanics and physics of solids</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>59</volume><issue>7</issue><spage>1437</spage><epage>1461</epage><pages>1437-1461</pages><issn>0022-5096</issn><abstract>The fracture strength of metal foams depends sensitively on the properties of the constituent material as well as the cellular architecture. A change in microscopic properties carries over to the macroscopic scale through an alteration of the mesoscopic damage and fracture mechanisms. In this paper we study these dependencies using a modelling framework that takes all these ingredients into account. We have developed a micromechanical model based on a discrete Voronoi representation of cellular metals that incorporates power-law strain hardening and damage development of the cell wall material. The influence of the relative density and material strain hardening on the cell wall damage behavior and overall fracture response is analyzed in detail. The effect of the cellular architecture is studied by varying the cell shape anisotropy and structural randomness. We also simulate the effect of post-processing heat treatments on the solid material plastic and fracture properties and how this affects the overall fracture profile and damage development. Finally, all material and architectural effects are summarized in a strength versus ductility graph, identifying trends for improved design of metallic foams.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jmps.2011.02.008</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5096 |
ispartof | Journal of the mechanics and physics of solids, 2011-07, Vol.59 (7), p.1437-1461 |
issn | 0022-5096 |
language | eng |
recordid | cdi_proquest_miscellaneous_889397405 |
source | Elsevier ScienceDirect Journals |
subjects | Anisotropy Architecture Cellular Cellular solids Damage Damage accumulation Foamed metals Fracture mechanics Heat treatment Modelling Randomness Strain hardening Walls |
title | Multiscale modelling of damage and failure in two-dimensional metallic foams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A37%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20modelling%20of%20damage%20and%20failure%20in%20two-dimensional%20metallic%20foams&rft.jtitle=Journal%20of%20the%20mechanics%20and%20physics%20of%20solids&rft.au=Mangipudi,%20K.R.&rft.date=2011-07-01&rft.volume=59&rft.issue=7&rft.spage=1437&rft.epage=1461&rft.pages=1437-1461&rft.issn=0022-5096&rft_id=info:doi/10.1016/j.jmps.2011.02.008&rft_dat=%3Cproquest_cross%3E889397405%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889397405&rft_id=info:pmid/&rft_els_id=S0022509611000366&rfr_iscdi=true |