Multiscale modelling of damage and failure in two-dimensional metallic foams

The fracture strength of metal foams depends sensitively on the properties of the constituent material as well as the cellular architecture. A change in microscopic properties carries over to the macroscopic scale through an alteration of the mesoscopic damage and fracture mechanisms. In this paper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanics and physics of solids 2011-07, Vol.59 (7), p.1437-1461
Hauptverfasser: Mangipudi, K.R., Onck, P.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1461
container_issue 7
container_start_page 1437
container_title Journal of the mechanics and physics of solids
container_volume 59
creator Mangipudi, K.R.
Onck, P.R.
description The fracture strength of metal foams depends sensitively on the properties of the constituent material as well as the cellular architecture. A change in microscopic properties carries over to the macroscopic scale through an alteration of the mesoscopic damage and fracture mechanisms. In this paper we study these dependencies using a modelling framework that takes all these ingredients into account. We have developed a micromechanical model based on a discrete Voronoi representation of cellular metals that incorporates power-law strain hardening and damage development of the cell wall material. The influence of the relative density and material strain hardening on the cell wall damage behavior and overall fracture response is analyzed in detail. The effect of the cellular architecture is studied by varying the cell shape anisotropy and structural randomness. We also simulate the effect of post-processing heat treatments on the solid material plastic and fracture properties and how this affects the overall fracture profile and damage development. Finally, all material and architectural effects are summarized in a strength versus ductility graph, identifying trends for improved design of metallic foams.
doi_str_mv 10.1016/j.jmps.2011.02.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889397405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022509611000366</els_id><sourcerecordid>889397405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-7581f406f57a44998628ca2916d1349201e6f1f69a2917458833808dc3e6f9683</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhbtQcHz8AVfZuWq9Sdo0ATcy-IIRN7oOIY8hpWnGpFX896aMa1cXDue7nHOq6hpDgwGz26EZwiE3BDBugDQA_KTaABBSdyDYWXWe8wAAHfR4U-1el3H2WavRohCNHUc_7VF0yKig9hapySCn_Lgki_yE5u9YGx_slH2c1IiCnVVBNHJRhXxZnTo1Znv1dy-qj8eH9-1zvXt7etne72pNKZnrvuPYtcBc16u2FYIzwrUiAjODaStKcMscdkysWt92nFPKgRtNiy4YpxfVzfHvIcXPxeZZhlKhZFeTjUuWnAsq-ha64iRHp04x52SdPCQfVPqRGOS6lhzkupZc15JAZFmrQHdHyJYOX94mmbW3k7bGJ6tnaaL_D_8Fmjx0GQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889397405</pqid></control><display><type>article</type><title>Multiscale modelling of damage and failure in two-dimensional metallic foams</title><source>Elsevier ScienceDirect Journals</source><creator>Mangipudi, K.R. ; Onck, P.R.</creator><creatorcontrib>Mangipudi, K.R. ; Onck, P.R.</creatorcontrib><description>The fracture strength of metal foams depends sensitively on the properties of the constituent material as well as the cellular architecture. A change in microscopic properties carries over to the macroscopic scale through an alteration of the mesoscopic damage and fracture mechanisms. In this paper we study these dependencies using a modelling framework that takes all these ingredients into account. We have developed a micromechanical model based on a discrete Voronoi representation of cellular metals that incorporates power-law strain hardening and damage development of the cell wall material. The influence of the relative density and material strain hardening on the cell wall damage behavior and overall fracture response is analyzed in detail. The effect of the cellular architecture is studied by varying the cell shape anisotropy and structural randomness. We also simulate the effect of post-processing heat treatments on the solid material plastic and fracture properties and how this affects the overall fracture profile and damage development. Finally, all material and architectural effects are summarized in a strength versus ductility graph, identifying trends for improved design of metallic foams.</description><identifier>ISSN: 0022-5096</identifier><identifier>DOI: 10.1016/j.jmps.2011.02.008</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Anisotropy ; Architecture ; Cellular ; Cellular solids ; Damage ; Damage accumulation ; Foamed metals ; Fracture mechanics ; Heat treatment ; Modelling ; Randomness ; Strain hardening ; Walls</subject><ispartof>Journal of the mechanics and physics of solids, 2011-07, Vol.59 (7), p.1437-1461</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-7581f406f57a44998628ca2916d1349201e6f1f69a2917458833808dc3e6f9683</citedby><cites>FETCH-LOGICAL-c332t-7581f406f57a44998628ca2916d1349201e6f1f69a2917458833808dc3e6f9683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmps.2011.02.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Mangipudi, K.R.</creatorcontrib><creatorcontrib>Onck, P.R.</creatorcontrib><title>Multiscale modelling of damage and failure in two-dimensional metallic foams</title><title>Journal of the mechanics and physics of solids</title><description>The fracture strength of metal foams depends sensitively on the properties of the constituent material as well as the cellular architecture. A change in microscopic properties carries over to the macroscopic scale through an alteration of the mesoscopic damage and fracture mechanisms. In this paper we study these dependencies using a modelling framework that takes all these ingredients into account. We have developed a micromechanical model based on a discrete Voronoi representation of cellular metals that incorporates power-law strain hardening and damage development of the cell wall material. The influence of the relative density and material strain hardening on the cell wall damage behavior and overall fracture response is analyzed in detail. The effect of the cellular architecture is studied by varying the cell shape anisotropy and structural randomness. We also simulate the effect of post-processing heat treatments on the solid material plastic and fracture properties and how this affects the overall fracture profile and damage development. Finally, all material and architectural effects are summarized in a strength versus ductility graph, identifying trends for improved design of metallic foams.</description><subject>Anisotropy</subject><subject>Architecture</subject><subject>Cellular</subject><subject>Cellular solids</subject><subject>Damage</subject><subject>Damage accumulation</subject><subject>Foamed metals</subject><subject>Fracture mechanics</subject><subject>Heat treatment</subject><subject>Modelling</subject><subject>Randomness</subject><subject>Strain hardening</subject><subject>Walls</subject><issn>0022-5096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhbtQcHz8AVfZuWq9Sdo0ATcy-IIRN7oOIY8hpWnGpFX896aMa1cXDue7nHOq6hpDgwGz26EZwiE3BDBugDQA_KTaABBSdyDYWXWe8wAAHfR4U-1el3H2WavRohCNHUc_7VF0yKig9hapySCn_Lgki_yE5u9YGx_slH2c1IiCnVVBNHJRhXxZnTo1Znv1dy-qj8eH9-1zvXt7etne72pNKZnrvuPYtcBc16u2FYIzwrUiAjODaStKcMscdkysWt92nFPKgRtNiy4YpxfVzfHvIcXPxeZZhlKhZFeTjUuWnAsq-ha64iRHp04x52SdPCQfVPqRGOS6lhzkupZc15JAZFmrQHdHyJYOX94mmbW3k7bGJ6tnaaL_D_8Fmjx0GQ</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Mangipudi, K.R.</creator><creator>Onck, P.R.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20110701</creationdate><title>Multiscale modelling of damage and failure in two-dimensional metallic foams</title><author>Mangipudi, K.R. ; Onck, P.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-7581f406f57a44998628ca2916d1349201e6f1f69a2917458833808dc3e6f9683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Anisotropy</topic><topic>Architecture</topic><topic>Cellular</topic><topic>Cellular solids</topic><topic>Damage</topic><topic>Damage accumulation</topic><topic>Foamed metals</topic><topic>Fracture mechanics</topic><topic>Heat treatment</topic><topic>Modelling</topic><topic>Randomness</topic><topic>Strain hardening</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mangipudi, K.R.</creatorcontrib><creatorcontrib>Onck, P.R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the mechanics and physics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mangipudi, K.R.</au><au>Onck, P.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale modelling of damage and failure in two-dimensional metallic foams</atitle><jtitle>Journal of the mechanics and physics of solids</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>59</volume><issue>7</issue><spage>1437</spage><epage>1461</epage><pages>1437-1461</pages><issn>0022-5096</issn><abstract>The fracture strength of metal foams depends sensitively on the properties of the constituent material as well as the cellular architecture. A change in microscopic properties carries over to the macroscopic scale through an alteration of the mesoscopic damage and fracture mechanisms. In this paper we study these dependencies using a modelling framework that takes all these ingredients into account. We have developed a micromechanical model based on a discrete Voronoi representation of cellular metals that incorporates power-law strain hardening and damage development of the cell wall material. The influence of the relative density and material strain hardening on the cell wall damage behavior and overall fracture response is analyzed in detail. The effect of the cellular architecture is studied by varying the cell shape anisotropy and structural randomness. We also simulate the effect of post-processing heat treatments on the solid material plastic and fracture properties and how this affects the overall fracture profile and damage development. Finally, all material and architectural effects are summarized in a strength versus ductility graph, identifying trends for improved design of metallic foams.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jmps.2011.02.008</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-5096
ispartof Journal of the mechanics and physics of solids, 2011-07, Vol.59 (7), p.1437-1461
issn 0022-5096
language eng
recordid cdi_proquest_miscellaneous_889397405
source Elsevier ScienceDirect Journals
subjects Anisotropy
Architecture
Cellular
Cellular solids
Damage
Damage accumulation
Foamed metals
Fracture mechanics
Heat treatment
Modelling
Randomness
Strain hardening
Walls
title Multiscale modelling of damage and failure in two-dimensional metallic foams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A37%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20modelling%20of%20damage%20and%20failure%20in%20two-dimensional%20metallic%20foams&rft.jtitle=Journal%20of%20the%20mechanics%20and%20physics%20of%20solids&rft.au=Mangipudi,%20K.R.&rft.date=2011-07-01&rft.volume=59&rft.issue=7&rft.spage=1437&rft.epage=1461&rft.pages=1437-1461&rft.issn=0022-5096&rft_id=info:doi/10.1016/j.jmps.2011.02.008&rft_dat=%3Cproquest_cross%3E889397405%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889397405&rft_id=info:pmid/&rft_els_id=S0022509611000366&rfr_iscdi=true