Research on probabilistic methods for control system design
A novel approach based on probability and randomization has emerged to synergize with the standard deterministic methods for control of systems with uncertainty. The main objective of this paper is to provide a broad perspective on this area of research known as “probabilistic robust control”, and t...
Gespeichert in:
Veröffentlicht in: | Automatica (Oxford) 2011-07, Vol.47 (7), p.1279-1293 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1293 |
---|---|
container_issue | 7 |
container_start_page | 1279 |
container_title | Automatica (Oxford) |
container_volume | 47 |
creator | Calafiore, Giuseppe C. Dabbene, Fabrizio Tempo, Roberto |
description | A novel approach based on probability and randomization has emerged to synergize with the standard deterministic methods for control of systems with uncertainty. The main objective of this paper is to provide a broad perspective on this area of research known as “probabilistic robust control”, and to address in a systematic manner recent advances. The focal point is on design methods, based on the interplay between uncertainty randomization and convex optimization, and on the illustration of specific control applications. |
doi_str_mv | 10.1016/j.automatica.2011.02.029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889394261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005109811001300</els_id><sourcerecordid>889394261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-1f47a2ee01cda68a95fb22651fb1e1fc2f98beb4f275339f4cc1bc7c6a6d3f113</originalsourceid><addsrcrecordid>eNqFUE1LxDAQDaLguvofehFPXTNJ203xpItfIAii55BOJ5qlbTTTFfz3dlnRo_BgGHgfM0-IDOQCJFTn64XbjLF3Y0C3UBJgIdWEek_MwCx1royu9sVMSlnmIGtzKI6Y19NagFEzcfFETC7hWxaH7D3FxjWhCzy5ZT2Nb7HlzMeUYRzGFLuMv3ikPmuJw-twLA6865hOfuZcvNxcP6_u8ofH2_vV5UOO2sgxB18snSKSgK2rjKtL3yhVleAbIPCofG0aagqvlqXWtS8QocElVq5qtQfQc3G2853u-9gQj7YPjNR1bqC4YWtMretCVVum2TExReZE3r6n0Lv0ZUHabV12bf_qstu6rFQT6kl6-hPiGF3nkxsw8K9eFUpDqbYRVzseTR9_BkqWMdCA1IZEONo2hv_DvgFyEYap</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889394261</pqid></control><display><type>article</type><title>Research on probabilistic methods for control system design</title><source>Elsevier ScienceDirect Journals</source><creator>Calafiore, Giuseppe C. ; Dabbene, Fabrizio ; Tempo, Roberto</creator><creatorcontrib>Calafiore, Giuseppe C. ; Dabbene, Fabrizio ; Tempo, Roberto</creatorcontrib><description>A novel approach based on probability and randomization has emerged to synergize with the standard deterministic methods for control of systems with uncertainty. The main objective of this paper is to provide a broad perspective on this area of research known as “probabilistic robust control”, and to address in a systematic manner recent advances. The focal point is on design methods, based on the interplay between uncertainty randomization and convex optimization, and on the illustration of specific control applications.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2011.02.029</identifier><identifier>CODEN: ATCAA9</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control of uncertain systems ; Control system synthesis ; Control systems ; Control systems design ; Control theory. Systems ; Design engineering ; Exact sciences and technology ; Optimization ; Probabilistic methods ; Randomization ; Randomized algorithms ; Uncertainty</subject><ispartof>Automatica (Oxford), 2011-07, Vol.47 (7), p.1279-1293</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-1f47a2ee01cda68a95fb22651fb1e1fc2f98beb4f275339f4cc1bc7c6a6d3f113</citedby><cites>FETCH-LOGICAL-c380t-1f47a2ee01cda68a95fb22651fb1e1fc2f98beb4f275339f4cc1bc7c6a6d3f113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0005109811001300$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24231521$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Calafiore, Giuseppe C.</creatorcontrib><creatorcontrib>Dabbene, Fabrizio</creatorcontrib><creatorcontrib>Tempo, Roberto</creatorcontrib><title>Research on probabilistic methods for control system design</title><title>Automatica (Oxford)</title><description>A novel approach based on probability and randomization has emerged to synergize with the standard deterministic methods for control of systems with uncertainty. The main objective of this paper is to provide a broad perspective on this area of research known as “probabilistic robust control”, and to address in a systematic manner recent advances. The focal point is on design methods, based on the interplay between uncertainty randomization and convex optimization, and on the illustration of specific control applications.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control of uncertain systems</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Control systems design</subject><subject>Control theory. Systems</subject><subject>Design engineering</subject><subject>Exact sciences and technology</subject><subject>Optimization</subject><subject>Probabilistic methods</subject><subject>Randomization</subject><subject>Randomized algorithms</subject><subject>Uncertainty</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LxDAQDaLguvofehFPXTNJ203xpItfIAii55BOJ5qlbTTTFfz3dlnRo_BgGHgfM0-IDOQCJFTn64XbjLF3Y0C3UBJgIdWEek_MwCx1royu9sVMSlnmIGtzKI6Y19NagFEzcfFETC7hWxaH7D3FxjWhCzy5ZT2Nb7HlzMeUYRzGFLuMv3ikPmuJw-twLA6865hOfuZcvNxcP6_u8ofH2_vV5UOO2sgxB18snSKSgK2rjKtL3yhVleAbIPCofG0aagqvlqXWtS8QocElVq5qtQfQc3G2853u-9gQj7YPjNR1bqC4YWtMretCVVum2TExReZE3r6n0Lv0ZUHabV12bf_qstu6rFQT6kl6-hPiGF3nkxsw8K9eFUpDqbYRVzseTR9_BkqWMdCA1IZEONo2hv_DvgFyEYap</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Calafiore, Giuseppe C.</creator><creator>Dabbene, Fabrizio</creator><creator>Tempo, Roberto</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110701</creationdate><title>Research on probabilistic methods for control system design</title><author>Calafiore, Giuseppe C. ; Dabbene, Fabrizio ; Tempo, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-1f47a2ee01cda68a95fb22651fb1e1fc2f98beb4f275339f4cc1bc7c6a6d3f113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control of uncertain systems</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Control systems design</topic><topic>Control theory. Systems</topic><topic>Design engineering</topic><topic>Exact sciences and technology</topic><topic>Optimization</topic><topic>Probabilistic methods</topic><topic>Randomization</topic><topic>Randomized algorithms</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calafiore, Giuseppe C.</creatorcontrib><creatorcontrib>Dabbene, Fabrizio</creatorcontrib><creatorcontrib>Tempo, Roberto</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calafiore, Giuseppe C.</au><au>Dabbene, Fabrizio</au><au>Tempo, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on probabilistic methods for control system design</atitle><jtitle>Automatica (Oxford)</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>47</volume><issue>7</issue><spage>1279</spage><epage>1293</epage><pages>1279-1293</pages><issn>0005-1098</issn><eissn>1873-2836</eissn><coden>ATCAA9</coden><abstract>A novel approach based on probability and randomization has emerged to synergize with the standard deterministic methods for control of systems with uncertainty. The main objective of this paper is to provide a broad perspective on this area of research known as “probabilistic robust control”, and to address in a systematic manner recent advances. The focal point is on design methods, based on the interplay between uncertainty randomization and convex optimization, and on the illustration of specific control applications.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2011.02.029</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-1098 |
ispartof | Automatica (Oxford), 2011-07, Vol.47 (7), p.1279-1293 |
issn | 0005-1098 1873-2836 |
language | eng |
recordid | cdi_proquest_miscellaneous_889394261 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Computer science control theory systems Control of uncertain systems Control system synthesis Control systems Control systems design Control theory. Systems Design engineering Exact sciences and technology Optimization Probabilistic methods Randomization Randomized algorithms Uncertainty |
title | Research on probabilistic methods for control system design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20probabilistic%20methods%20for%20control%20system%20design&rft.jtitle=Automatica%20(Oxford)&rft.au=Calafiore,%20Giuseppe%20C.&rft.date=2011-07-01&rft.volume=47&rft.issue=7&rft.spage=1279&rft.epage=1293&rft.pages=1279-1293&rft.issn=0005-1098&rft.eissn=1873-2836&rft.coden=ATCAA9&rft_id=info:doi/10.1016/j.automatica.2011.02.029&rft_dat=%3Cproquest_cross%3E889394261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889394261&rft_id=info:pmid/&rft_els_id=S0005109811001300&rfr_iscdi=true |