Research on probabilistic methods for control system design

A novel approach based on probability and randomization has emerged to synergize with the standard deterministic methods for control of systems with uncertainty. The main objective of this paper is to provide a broad perspective on this area of research known as “probabilistic robust control”, and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) 2011-07, Vol.47 (7), p.1279-1293
Hauptverfasser: Calafiore, Giuseppe C., Dabbene, Fabrizio, Tempo, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1293
container_issue 7
container_start_page 1279
container_title Automatica (Oxford)
container_volume 47
creator Calafiore, Giuseppe C.
Dabbene, Fabrizio
Tempo, Roberto
description A novel approach based on probability and randomization has emerged to synergize with the standard deterministic methods for control of systems with uncertainty. The main objective of this paper is to provide a broad perspective on this area of research known as “probabilistic robust control”, and to address in a systematic manner recent advances. The focal point is on design methods, based on the interplay between uncertainty randomization and convex optimization, and on the illustration of specific control applications.
doi_str_mv 10.1016/j.automatica.2011.02.029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889394261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005109811001300</els_id><sourcerecordid>889394261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-1f47a2ee01cda68a95fb22651fb1e1fc2f98beb4f275339f4cc1bc7c6a6d3f113</originalsourceid><addsrcrecordid>eNqFUE1LxDAQDaLguvofehFPXTNJ203xpItfIAii55BOJ5qlbTTTFfz3dlnRo_BgGHgfM0-IDOQCJFTn64XbjLF3Y0C3UBJgIdWEek_MwCx1royu9sVMSlnmIGtzKI6Y19NagFEzcfFETC7hWxaH7D3FxjWhCzy5ZT2Nb7HlzMeUYRzGFLuMv3ikPmuJw-twLA6865hOfuZcvNxcP6_u8ofH2_vV5UOO2sgxB18snSKSgK2rjKtL3yhVleAbIPCofG0aagqvlqXWtS8QocElVq5qtQfQc3G2853u-9gQj7YPjNR1bqC4YWtMretCVVum2TExReZE3r6n0Lv0ZUHabV12bf_qstu6rFQT6kl6-hPiGF3nkxsw8K9eFUpDqbYRVzseTR9_BkqWMdCA1IZEONo2hv_DvgFyEYap</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889394261</pqid></control><display><type>article</type><title>Research on probabilistic methods for control system design</title><source>Elsevier ScienceDirect Journals</source><creator>Calafiore, Giuseppe C. ; Dabbene, Fabrizio ; Tempo, Roberto</creator><creatorcontrib>Calafiore, Giuseppe C. ; Dabbene, Fabrizio ; Tempo, Roberto</creatorcontrib><description>A novel approach based on probability and randomization has emerged to synergize with the standard deterministic methods for control of systems with uncertainty. The main objective of this paper is to provide a broad perspective on this area of research known as “probabilistic robust control”, and to address in a systematic manner recent advances. The focal point is on design methods, based on the interplay between uncertainty randomization and convex optimization, and on the illustration of specific control applications.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2011.02.029</identifier><identifier>CODEN: ATCAA9</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control of uncertain systems ; Control system synthesis ; Control systems ; Control systems design ; Control theory. Systems ; Design engineering ; Exact sciences and technology ; Optimization ; Probabilistic methods ; Randomization ; Randomized algorithms ; Uncertainty</subject><ispartof>Automatica (Oxford), 2011-07, Vol.47 (7), p.1279-1293</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-1f47a2ee01cda68a95fb22651fb1e1fc2f98beb4f275339f4cc1bc7c6a6d3f113</citedby><cites>FETCH-LOGICAL-c380t-1f47a2ee01cda68a95fb22651fb1e1fc2f98beb4f275339f4cc1bc7c6a6d3f113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0005109811001300$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24231521$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Calafiore, Giuseppe C.</creatorcontrib><creatorcontrib>Dabbene, Fabrizio</creatorcontrib><creatorcontrib>Tempo, Roberto</creatorcontrib><title>Research on probabilistic methods for control system design</title><title>Automatica (Oxford)</title><description>A novel approach based on probability and randomization has emerged to synergize with the standard deterministic methods for control of systems with uncertainty. The main objective of this paper is to provide a broad perspective on this area of research known as “probabilistic robust control”, and to address in a systematic manner recent advances. The focal point is on design methods, based on the interplay between uncertainty randomization and convex optimization, and on the illustration of specific control applications.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control of uncertain systems</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Control systems design</subject><subject>Control theory. Systems</subject><subject>Design engineering</subject><subject>Exact sciences and technology</subject><subject>Optimization</subject><subject>Probabilistic methods</subject><subject>Randomization</subject><subject>Randomized algorithms</subject><subject>Uncertainty</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LxDAQDaLguvofehFPXTNJ203xpItfIAii55BOJ5qlbTTTFfz3dlnRo_BgGHgfM0-IDOQCJFTn64XbjLF3Y0C3UBJgIdWEek_MwCx1royu9sVMSlnmIGtzKI6Y19NagFEzcfFETC7hWxaH7D3FxjWhCzy5ZT2Nb7HlzMeUYRzGFLuMv3ikPmuJw-twLA6865hOfuZcvNxcP6_u8ofH2_vV5UOO2sgxB18snSKSgK2rjKtL3yhVleAbIPCofG0aagqvlqXWtS8QocElVq5qtQfQc3G2853u-9gQj7YPjNR1bqC4YWtMretCVVum2TExReZE3r6n0Lv0ZUHabV12bf_qstu6rFQT6kl6-hPiGF3nkxsw8K9eFUpDqbYRVzseTR9_BkqWMdCA1IZEONo2hv_DvgFyEYap</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Calafiore, Giuseppe C.</creator><creator>Dabbene, Fabrizio</creator><creator>Tempo, Roberto</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110701</creationdate><title>Research on probabilistic methods for control system design</title><author>Calafiore, Giuseppe C. ; Dabbene, Fabrizio ; Tempo, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-1f47a2ee01cda68a95fb22651fb1e1fc2f98beb4f275339f4cc1bc7c6a6d3f113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control of uncertain systems</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Control systems design</topic><topic>Control theory. Systems</topic><topic>Design engineering</topic><topic>Exact sciences and technology</topic><topic>Optimization</topic><topic>Probabilistic methods</topic><topic>Randomization</topic><topic>Randomized algorithms</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calafiore, Giuseppe C.</creatorcontrib><creatorcontrib>Dabbene, Fabrizio</creatorcontrib><creatorcontrib>Tempo, Roberto</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calafiore, Giuseppe C.</au><au>Dabbene, Fabrizio</au><au>Tempo, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on probabilistic methods for control system design</atitle><jtitle>Automatica (Oxford)</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>47</volume><issue>7</issue><spage>1279</spage><epage>1293</epage><pages>1279-1293</pages><issn>0005-1098</issn><eissn>1873-2836</eissn><coden>ATCAA9</coden><abstract>A novel approach based on probability and randomization has emerged to synergize with the standard deterministic methods for control of systems with uncertainty. The main objective of this paper is to provide a broad perspective on this area of research known as “probabilistic robust control”, and to address in a systematic manner recent advances. The focal point is on design methods, based on the interplay between uncertainty randomization and convex optimization, and on the illustration of specific control applications.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2011.02.029</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0005-1098
ispartof Automatica (Oxford), 2011-07, Vol.47 (7), p.1279-1293
issn 0005-1098
1873-2836
language eng
recordid cdi_proquest_miscellaneous_889394261
source Elsevier ScienceDirect Journals
subjects Applied sciences
Computer science
control theory
systems
Control of uncertain systems
Control system synthesis
Control systems
Control systems design
Control theory. Systems
Design engineering
Exact sciences and technology
Optimization
Probabilistic methods
Randomization
Randomized algorithms
Uncertainty
title Research on probabilistic methods for control system design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20probabilistic%20methods%20for%20control%20system%20design&rft.jtitle=Automatica%20(Oxford)&rft.au=Calafiore,%20Giuseppe%20C.&rft.date=2011-07-01&rft.volume=47&rft.issue=7&rft.spage=1279&rft.epage=1293&rft.pages=1279-1293&rft.issn=0005-1098&rft.eissn=1873-2836&rft.coden=ATCAA9&rft_id=info:doi/10.1016/j.automatica.2011.02.029&rft_dat=%3Cproquest_cross%3E889394261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889394261&rft_id=info:pmid/&rft_els_id=S0005109811001300&rfr_iscdi=true