Gaussian kernels for density estimation with compositional data
Common simplifications of the bandwidth matrix cannot be applied to existing kernels for density estimation with compositional data. In this paper, kernel density estimation methods are modified on the basis of recent developments in compositional data analysis and bandwidth matrix selection theory....
Gespeichert in:
Veröffentlicht in: | Computers & geosciences 2011-05, Vol.37 (5), p.702-711 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 711 |
---|---|
container_issue | 5 |
container_start_page | 702 |
container_title | Computers & geosciences |
container_volume | 37 |
creator | Chacón, J.E. Mateu-Figueras, G. Martín-Fernández, J.A. |
description | Common simplifications of the bandwidth matrix cannot be applied to existing kernels for density estimation with compositional data. In this paper, kernel density estimation methods are modified on the basis of recent developments in compositional data analysis and bandwidth matrix selection theory. The isometric log-ratio normal kernel is used to define a new estimator in which the smoothing parameter is chosen from the most general class of bandwidth matrices on the basis of a recently proposed plug-in algorithm. Both simulated and real examples are presented in which the behaviour of our approach is illustrated, which shows the advantage of the new estimator over existing proposed methods. |
doi_str_mv | 10.1016/j.cageo.2009.12.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889392617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098300410002748</els_id><sourcerecordid>889392617</sourcerecordid><originalsourceid>FETCH-LOGICAL-a382t-7018e7bcab0d4bcd2aea08a33fe89d6e22ab7a6ab4189f6fa4b1d64dec8c4eb13</originalsourceid><addsrcrecordid>eNp9kDtPwzAQgC0EEqXwCxjIxpTgR5o4A0KogoJUiQE6Wxf7UhzSuNgpqP8elzAznXT33esj5JLRjFFW3LSZhjW6jFNaZYxnlLEjMmGyFGkpqTgmk1iQqaA0PyVnIbSUUs7lbELuFrALwUKffKDvsQtJ43xisA922CcYBruBwbo--bbDe6LdZutiJSagSwwMcE5OGugCXvzFKVk9PrzNn9Lly-J5fr9MQUg-pCVlEstaQ01NXmvDAYFKEKJBWZkCOYe6hALqnMmqKRrIa2aK3KCWOseaiSm5HuduvfvcxbvUxgaNXQc9ul1QUlai4gUrIylGUnsXgsdGbX18wu8Vo-pgS7Xq15Y62FKMq2grdl2NXQ04BWtvg1q98khHU4WYcRmJ25GIkvDLoldBW-w1GutRD8o4---GHwvZfvc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889392617</pqid></control><display><type>article</type><title>Gaussian kernels for density estimation with compositional data</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Chacón, J.E. ; Mateu-Figueras, G. ; Martín-Fernández, J.A.</creator><creatorcontrib>Chacón, J.E. ; Mateu-Figueras, G. ; Martín-Fernández, J.A.</creatorcontrib><description>Common simplifications of the bandwidth matrix cannot be applied to existing kernels for density estimation with compositional data. In this paper, kernel density estimation methods are modified on the basis of recent developments in compositional data analysis and bandwidth matrix selection theory. The isometric log-ratio normal kernel is used to define a new estimator in which the smoothing parameter is chosen from the most general class of bandwidth matrices on the basis of a recently proposed plug-in algorithm. Both simulated and real examples are presented in which the behaviour of our approach is illustrated, which shows the advantage of the new estimator over existing proposed methods.</description><identifier>ISSN: 0098-3004</identifier><identifier>EISSN: 1873-7803</identifier><identifier>DOI: 10.1016/j.cageo.2009.12.011</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>algorithms ; Bandwidth ; Computer simulation ; computers ; data analysis ; data collection ; Density ; Estimators ; Gaussian ; Isometric log-ratio ; Kernels ; Mathematical analysis ; Normal distribution ; Simplex ; Simplification</subject><ispartof>Computers & geosciences, 2011-05, Vol.37 (5), p.702-711</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a382t-7018e7bcab0d4bcd2aea08a33fe89d6e22ab7a6ab4189f6fa4b1d64dec8c4eb13</citedby><cites>FETCH-LOGICAL-a382t-7018e7bcab0d4bcd2aea08a33fe89d6e22ab7a6ab4189f6fa4b1d64dec8c4eb13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0098300410002748$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Chacón, J.E.</creatorcontrib><creatorcontrib>Mateu-Figueras, G.</creatorcontrib><creatorcontrib>Martín-Fernández, J.A.</creatorcontrib><title>Gaussian kernels for density estimation with compositional data</title><title>Computers & geosciences</title><description>Common simplifications of the bandwidth matrix cannot be applied to existing kernels for density estimation with compositional data. In this paper, kernel density estimation methods are modified on the basis of recent developments in compositional data analysis and bandwidth matrix selection theory. The isometric log-ratio normal kernel is used to define a new estimator in which the smoothing parameter is chosen from the most general class of bandwidth matrices on the basis of a recently proposed plug-in algorithm. Both simulated and real examples are presented in which the behaviour of our approach is illustrated, which shows the advantage of the new estimator over existing proposed methods.</description><subject>algorithms</subject><subject>Bandwidth</subject><subject>Computer simulation</subject><subject>computers</subject><subject>data analysis</subject><subject>data collection</subject><subject>Density</subject><subject>Estimators</subject><subject>Gaussian</subject><subject>Isometric log-ratio</subject><subject>Kernels</subject><subject>Mathematical analysis</subject><subject>Normal distribution</subject><subject>Simplex</subject><subject>Simplification</subject><issn>0098-3004</issn><issn>1873-7803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAQgC0EEqXwCxjIxpTgR5o4A0KogoJUiQE6Wxf7UhzSuNgpqP8elzAznXT33esj5JLRjFFW3LSZhjW6jFNaZYxnlLEjMmGyFGkpqTgmk1iQqaA0PyVnIbSUUs7lbELuFrALwUKffKDvsQtJ43xisA922CcYBruBwbo--bbDe6LdZutiJSagSwwMcE5OGugCXvzFKVk9PrzNn9Lly-J5fr9MQUg-pCVlEstaQ01NXmvDAYFKEKJBWZkCOYe6hALqnMmqKRrIa2aK3KCWOseaiSm5HuduvfvcxbvUxgaNXQc9ul1QUlai4gUrIylGUnsXgsdGbX18wu8Vo-pgS7Xq15Y62FKMq2grdl2NXQ04BWtvg1q98khHU4WYcRmJ25GIkvDLoldBW-w1GutRD8o4---GHwvZfvc</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Chacón, J.E.</creator><creator>Mateu-Figueras, G.</creator><creator>Martín-Fernández, J.A.</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110501</creationdate><title>Gaussian kernels for density estimation with compositional data</title><author>Chacón, J.E. ; Mateu-Figueras, G. ; Martín-Fernández, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a382t-7018e7bcab0d4bcd2aea08a33fe89d6e22ab7a6ab4189f6fa4b1d64dec8c4eb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>algorithms</topic><topic>Bandwidth</topic><topic>Computer simulation</topic><topic>computers</topic><topic>data analysis</topic><topic>data collection</topic><topic>Density</topic><topic>Estimators</topic><topic>Gaussian</topic><topic>Isometric log-ratio</topic><topic>Kernels</topic><topic>Mathematical analysis</topic><topic>Normal distribution</topic><topic>Simplex</topic><topic>Simplification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chacón, J.E.</creatorcontrib><creatorcontrib>Mateu-Figueras, G.</creatorcontrib><creatorcontrib>Martín-Fernández, J.A.</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chacón, J.E.</au><au>Mateu-Figueras, G.</au><au>Martín-Fernández, J.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gaussian kernels for density estimation with compositional data</atitle><jtitle>Computers & geosciences</jtitle><date>2011-05-01</date><risdate>2011</risdate><volume>37</volume><issue>5</issue><spage>702</spage><epage>711</epage><pages>702-711</pages><issn>0098-3004</issn><eissn>1873-7803</eissn><abstract>Common simplifications of the bandwidth matrix cannot be applied to existing kernels for density estimation with compositional data. In this paper, kernel density estimation methods are modified on the basis of recent developments in compositional data analysis and bandwidth matrix selection theory. The isometric log-ratio normal kernel is used to define a new estimator in which the smoothing parameter is chosen from the most general class of bandwidth matrices on the basis of a recently proposed plug-in algorithm. Both simulated and real examples are presented in which the behaviour of our approach is illustrated, which shows the advantage of the new estimator over existing proposed methods.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cageo.2009.12.011</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-3004 |
ispartof | Computers & geosciences, 2011-05, Vol.37 (5), p.702-711 |
issn | 0098-3004 1873-7803 |
language | eng |
recordid | cdi_proquest_miscellaneous_889392617 |
source | Elsevier ScienceDirect Journals Complete |
subjects | algorithms Bandwidth Computer simulation computers data analysis data collection Density Estimators Gaussian Isometric log-ratio Kernels Mathematical analysis Normal distribution Simplex Simplification |
title | Gaussian kernels for density estimation with compositional data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gaussian%20kernels%20for%20density%20estimation%20with%20compositional%20data&rft.jtitle=Computers%20&%20geosciences&rft.au=Chac%C3%B3n,%20J.E.&rft.date=2011-05-01&rft.volume=37&rft.issue=5&rft.spage=702&rft.epage=711&rft.pages=702-711&rft.issn=0098-3004&rft.eissn=1873-7803&rft_id=info:doi/10.1016/j.cageo.2009.12.011&rft_dat=%3Cproquest_cross%3E889392617%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889392617&rft_id=info:pmid/&rft_els_id=S0098300410002748&rfr_iscdi=true |