Gaussian kernels for density estimation with compositional data

Common simplifications of the bandwidth matrix cannot be applied to existing kernels for density estimation with compositional data. In this paper, kernel density estimation methods are modified on the basis of recent developments in compositional data analysis and bandwidth matrix selection theory....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & geosciences 2011-05, Vol.37 (5), p.702-711
Hauptverfasser: Chacón, J.E., Mateu-Figueras, G., Martín-Fernández, J.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 711
container_issue 5
container_start_page 702
container_title Computers & geosciences
container_volume 37
creator Chacón, J.E.
Mateu-Figueras, G.
Martín-Fernández, J.A.
description Common simplifications of the bandwidth matrix cannot be applied to existing kernels for density estimation with compositional data. In this paper, kernel density estimation methods are modified on the basis of recent developments in compositional data analysis and bandwidth matrix selection theory. The isometric log-ratio normal kernel is used to define a new estimator in which the smoothing parameter is chosen from the most general class of bandwidth matrices on the basis of a recently proposed plug-in algorithm. Both simulated and real examples are presented in which the behaviour of our approach is illustrated, which shows the advantage of the new estimator over existing proposed methods.
doi_str_mv 10.1016/j.cageo.2009.12.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889392617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098300410002748</els_id><sourcerecordid>889392617</sourcerecordid><originalsourceid>FETCH-LOGICAL-a382t-7018e7bcab0d4bcd2aea08a33fe89d6e22ab7a6ab4189f6fa4b1d64dec8c4eb13</originalsourceid><addsrcrecordid>eNp9kDtPwzAQgC0EEqXwCxjIxpTgR5o4A0KogoJUiQE6Wxf7UhzSuNgpqP8elzAznXT33esj5JLRjFFW3LSZhjW6jFNaZYxnlLEjMmGyFGkpqTgmk1iQqaA0PyVnIbSUUs7lbELuFrALwUKffKDvsQtJ43xisA922CcYBruBwbo--bbDe6LdZutiJSagSwwMcE5OGugCXvzFKVk9PrzNn9Lly-J5fr9MQUg-pCVlEstaQ01NXmvDAYFKEKJBWZkCOYe6hALqnMmqKRrIa2aK3KCWOseaiSm5HuduvfvcxbvUxgaNXQc9ul1QUlai4gUrIylGUnsXgsdGbX18wu8Vo-pgS7Xq15Y62FKMq2grdl2NXQ04BWtvg1q98khHU4WYcRmJ25GIkvDLoldBW-w1GutRD8o4---GHwvZfvc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889392617</pqid></control><display><type>article</type><title>Gaussian kernels for density estimation with compositional data</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Chacón, J.E. ; Mateu-Figueras, G. ; Martín-Fernández, J.A.</creator><creatorcontrib>Chacón, J.E. ; Mateu-Figueras, G. ; Martín-Fernández, J.A.</creatorcontrib><description>Common simplifications of the bandwidth matrix cannot be applied to existing kernels for density estimation with compositional data. In this paper, kernel density estimation methods are modified on the basis of recent developments in compositional data analysis and bandwidth matrix selection theory. The isometric log-ratio normal kernel is used to define a new estimator in which the smoothing parameter is chosen from the most general class of bandwidth matrices on the basis of a recently proposed plug-in algorithm. Both simulated and real examples are presented in which the behaviour of our approach is illustrated, which shows the advantage of the new estimator over existing proposed methods.</description><identifier>ISSN: 0098-3004</identifier><identifier>EISSN: 1873-7803</identifier><identifier>DOI: 10.1016/j.cageo.2009.12.011</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>algorithms ; Bandwidth ; Computer simulation ; computers ; data analysis ; data collection ; Density ; Estimators ; Gaussian ; Isometric log-ratio ; Kernels ; Mathematical analysis ; Normal distribution ; Simplex ; Simplification</subject><ispartof>Computers &amp; geosciences, 2011-05, Vol.37 (5), p.702-711</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a382t-7018e7bcab0d4bcd2aea08a33fe89d6e22ab7a6ab4189f6fa4b1d64dec8c4eb13</citedby><cites>FETCH-LOGICAL-a382t-7018e7bcab0d4bcd2aea08a33fe89d6e22ab7a6ab4189f6fa4b1d64dec8c4eb13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0098300410002748$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Chacón, J.E.</creatorcontrib><creatorcontrib>Mateu-Figueras, G.</creatorcontrib><creatorcontrib>Martín-Fernández, J.A.</creatorcontrib><title>Gaussian kernels for density estimation with compositional data</title><title>Computers &amp; geosciences</title><description>Common simplifications of the bandwidth matrix cannot be applied to existing kernels for density estimation with compositional data. In this paper, kernel density estimation methods are modified on the basis of recent developments in compositional data analysis and bandwidth matrix selection theory. The isometric log-ratio normal kernel is used to define a new estimator in which the smoothing parameter is chosen from the most general class of bandwidth matrices on the basis of a recently proposed plug-in algorithm. Both simulated and real examples are presented in which the behaviour of our approach is illustrated, which shows the advantage of the new estimator over existing proposed methods.</description><subject>algorithms</subject><subject>Bandwidth</subject><subject>Computer simulation</subject><subject>computers</subject><subject>data analysis</subject><subject>data collection</subject><subject>Density</subject><subject>Estimators</subject><subject>Gaussian</subject><subject>Isometric log-ratio</subject><subject>Kernels</subject><subject>Mathematical analysis</subject><subject>Normal distribution</subject><subject>Simplex</subject><subject>Simplification</subject><issn>0098-3004</issn><issn>1873-7803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAQgC0EEqXwCxjIxpTgR5o4A0KogoJUiQE6Wxf7UhzSuNgpqP8elzAznXT33esj5JLRjFFW3LSZhjW6jFNaZYxnlLEjMmGyFGkpqTgmk1iQqaA0PyVnIbSUUs7lbELuFrALwUKffKDvsQtJ43xisA922CcYBruBwbo--bbDe6LdZutiJSagSwwMcE5OGugCXvzFKVk9PrzNn9Lly-J5fr9MQUg-pCVlEstaQ01NXmvDAYFKEKJBWZkCOYe6hALqnMmqKRrIa2aK3KCWOseaiSm5HuduvfvcxbvUxgaNXQc9ul1QUlai4gUrIylGUnsXgsdGbX18wu8Vo-pgS7Xq15Y62FKMq2grdl2NXQ04BWtvg1q98khHU4WYcRmJ25GIkvDLoldBW-w1GutRD8o4---GHwvZfvc</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Chacón, J.E.</creator><creator>Mateu-Figueras, G.</creator><creator>Martín-Fernández, J.A.</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110501</creationdate><title>Gaussian kernels for density estimation with compositional data</title><author>Chacón, J.E. ; Mateu-Figueras, G. ; Martín-Fernández, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a382t-7018e7bcab0d4bcd2aea08a33fe89d6e22ab7a6ab4189f6fa4b1d64dec8c4eb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>algorithms</topic><topic>Bandwidth</topic><topic>Computer simulation</topic><topic>computers</topic><topic>data analysis</topic><topic>data collection</topic><topic>Density</topic><topic>Estimators</topic><topic>Gaussian</topic><topic>Isometric log-ratio</topic><topic>Kernels</topic><topic>Mathematical analysis</topic><topic>Normal distribution</topic><topic>Simplex</topic><topic>Simplification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chacón, J.E.</creatorcontrib><creatorcontrib>Mateu-Figueras, G.</creatorcontrib><creatorcontrib>Martín-Fernández, J.A.</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chacón, J.E.</au><au>Mateu-Figueras, G.</au><au>Martín-Fernández, J.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gaussian kernels for density estimation with compositional data</atitle><jtitle>Computers &amp; geosciences</jtitle><date>2011-05-01</date><risdate>2011</risdate><volume>37</volume><issue>5</issue><spage>702</spage><epage>711</epage><pages>702-711</pages><issn>0098-3004</issn><eissn>1873-7803</eissn><abstract>Common simplifications of the bandwidth matrix cannot be applied to existing kernels for density estimation with compositional data. In this paper, kernel density estimation methods are modified on the basis of recent developments in compositional data analysis and bandwidth matrix selection theory. The isometric log-ratio normal kernel is used to define a new estimator in which the smoothing parameter is chosen from the most general class of bandwidth matrices on the basis of a recently proposed plug-in algorithm. Both simulated and real examples are presented in which the behaviour of our approach is illustrated, which shows the advantage of the new estimator over existing proposed methods.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cageo.2009.12.011</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0098-3004
ispartof Computers & geosciences, 2011-05, Vol.37 (5), p.702-711
issn 0098-3004
1873-7803
language eng
recordid cdi_proquest_miscellaneous_889392617
source Elsevier ScienceDirect Journals Complete
subjects algorithms
Bandwidth
Computer simulation
computers
data analysis
data collection
Density
Estimators
Gaussian
Isometric log-ratio
Kernels
Mathematical analysis
Normal distribution
Simplex
Simplification
title Gaussian kernels for density estimation with compositional data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gaussian%20kernels%20for%20density%20estimation%20with%20compositional%20data&rft.jtitle=Computers%20&%20geosciences&rft.au=Chac%C3%B3n,%20J.E.&rft.date=2011-05-01&rft.volume=37&rft.issue=5&rft.spage=702&rft.epage=711&rft.pages=702-711&rft.issn=0098-3004&rft.eissn=1873-7803&rft_id=info:doi/10.1016/j.cageo.2009.12.011&rft_dat=%3Cproquest_cross%3E889392617%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889392617&rft_id=info:pmid/&rft_els_id=S0098300410002748&rfr_iscdi=true