MgO-based tunnel junction material for high-speed toggle magnetic random access memory
We report the first demonstration of a magnetoresistive random access memory (MRAM) circuit incorporating MgO-based magnetic tunnel junction (MTJ) material for higher performance. We compare our results to those of AlOx-based devices, and we discuss the MTJ process optimization and material changes...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2006-08, Vol.42 (8), p.1935-1939 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1939 |
---|---|
container_issue | 8 |
container_start_page | 1935 |
container_title | IEEE transactions on magnetics |
container_volume | 42 |
creator | Dave, Renu W. Steiner, G. Slaughter, J. M. Sun, J. J. Craigo, B. Pietambaram, S. Smith, K. Grynkewich, G. DeHerrera, M. Akerman, J. Tehrani, S. |
description | We report the first demonstration of a magnetoresistive random access memory (MRAM) circuit incorporating MgO-based magnetic tunnel junction (MTJ) material for higher performance. We compare our results to those of AlOx-based devices, and we discuss the MTJ process optimization and material changes that made the demonstration possible.We present data on key MTJ material attributes for different oxidation processes and free-layer alloys, including resistance distributions, bias dependence, free-layer magnetic properties, interlayer coupling, breakdown voltage, and thermal endurance. A tunneling magnetoresistance (TMR) greater than 230% was achieved with CoFeB free layers and greater than 85% with NiFe free layers. Although the TMR with NiFe is at the low end of our MgO comparison, even this MTJ material enables faster access times, since its TMR is almost double that of a similar structure with an AlOx barrier. Bit-to-bit resistance distributions are somewhat wider for MgO barriers, with sigma about 1.5% compared to about 0.9% for AlOx. The read access time of our 4 Mb toggle MRAM circuit was reduced from 21 ns with AlOx to a circuit-limited 17 ns with MgO. |
doi_str_mv | 10.1109/TMAG.2006.877743 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_889390910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9099171</ieee_id><sourcerecordid>889390910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-d5a16d645410cae5d18cbe4e28aea3749cdddb6070bcf80e047f5bc8c5585c2c3</originalsourceid><addsrcrecordid>eNp9kc-L1DAUx4soOI7eBS9FkfVgx5c2P4_Drq7CLntZ9xrS9LWTsW3GpEX2vzelywqCnkLyPu_xvvlk2WsCO0JAfbq93l_uSgC-k0IIWj3JNkRRUqQX9TTbABBZKMrp8-xFjMd0pYzAJru77m6K2kRs8mkeR-zz4zzayfkxH8yEwZk-b33ID647FPGEC-e7rsdU7kacnM2DGRs_5MZajDEfcPDh_mX2rDV9xFcP5zb7_uXz7fnX4urm8tv5_qqwjPCpaJghvOGUUQLWIGuItDVSLKVBUwmqbNM0NQcBtW0lIFDRstpKy5hktrTVNvu4zo2_8DTX-hTcYMK99sbpC3e31z50-sd00ITJ9Cnb7GzFT8H_nDFOenDRYt-bEf0ctZSqUqAIJPLDf0nCBakksIon9O1f6NHPYUyxteSMCg5MJejdv6CSQuKStSpRsFI2-BgDto-BCOhFs14060WzXjWnlvcPg020pm-TDevinz6hlCjVssCblXOI-FhOYRVJSX4Dm--v1g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408658773</pqid></control><display><type>article</type><title>MgO-based tunnel junction material for high-speed toggle magnetic random access memory</title><source>IEEE Electronic Library (IEL)</source><creator>Dave, Renu W. ; Steiner, G. ; Slaughter, J. M. ; Sun, J. J. ; Craigo, B. ; Pietambaram, S. ; Smith, K. ; Grynkewich, G. ; DeHerrera, M. ; Akerman, J. ; Tehrani, S.</creator><creatorcontrib>Dave, Renu W. ; Steiner, G. ; Slaughter, J. M. ; Sun, J. J. ; Craigo, B. ; Pietambaram, S. ; Smith, K. ; Grynkewich, G. ; DeHerrera, M. ; Akerman, J. ; Tehrani, S.</creatorcontrib><description>We report the first demonstration of a magnetoresistive random access memory (MRAM) circuit incorporating MgO-based magnetic tunnel junction (MTJ) material for higher performance. We compare our results to those of AlOx-based devices, and we discuss the MTJ process optimization and material changes that made the demonstration possible.We present data on key MTJ material attributes for different oxidation processes and free-layer alloys, including resistance distributions, bias dependence, free-layer magnetic properties, interlayer coupling, breakdown voltage, and thermal endurance. A tunneling magnetoresistance (TMR) greater than 230% was achieved with CoFeB free layers and greater than 85% with NiFe free layers. Although the TMR with NiFe is at the low end of our MgO comparison, even this MTJ material enables faster access times, since its TMR is almost double that of a similar structure with an AlOx barrier. Bit-to-bit resistance distributions are somewhat wider for MgO barriers, with sigma about 1.5% compared to about 0.9% for AlOx. The read access time of our 4 Mb toggle MRAM circuit was reduced from 21 ns with AlOx to a circuit-limited 17 ns with MgO.</description><identifier>ISSN: 0018-9464</identifier><identifier>ISSN: 1941-0069</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2006.877743</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Access time ; Annealing ; Circuits ; Cross-disciplinary physics: materials science; rheology ; Endurance ; Exact sciences and technology ; Interlayers ; Intermetallic compounds ; Intermetallics ; Iron compounds ; Junctions ; Magnesium oxide ; Magnetic properties ; magnetic random access memory (MRAM) ; magnetic tunnel junction (MTJ) ; Magnetic tunneling ; Magnetism ; Magnetoresistance ; Magnetoresistive random access memory ; Magnetoresistivity ; Materials science ; MgO ; Nickel base alloys ; Nickel compounds ; Optimization ; Other topics in materials science ; Oxidation ; Oxidation resistance ; Physics ; Random access memory ; Resistance ; room-temperature ; Sputtering ; Temperature measurement ; Thermal resistance ; toggle switching ; Tunnel junctions ; tunneling magnetoresistance(TMR)</subject><ispartof>IEEE transactions on magnetics, 2006-08, Vol.42 (8), p.1935-1939</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-d5a16d645410cae5d18cbe4e28aea3749cdddb6070bcf80e047f5bc8c5585c2c3</citedby><cites>FETCH-LOGICAL-c516t-d5a16d645410cae5d18cbe4e28aea3749cdddb6070bcf80e047f5bc8c5585c2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9099171$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9099171$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17997299$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-15874$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Dave, Renu W.</creatorcontrib><creatorcontrib>Steiner, G.</creatorcontrib><creatorcontrib>Slaughter, J. M.</creatorcontrib><creatorcontrib>Sun, J. J.</creatorcontrib><creatorcontrib>Craigo, B.</creatorcontrib><creatorcontrib>Pietambaram, S.</creatorcontrib><creatorcontrib>Smith, K.</creatorcontrib><creatorcontrib>Grynkewich, G.</creatorcontrib><creatorcontrib>DeHerrera, M.</creatorcontrib><creatorcontrib>Akerman, J.</creatorcontrib><creatorcontrib>Tehrani, S.</creatorcontrib><title>MgO-based tunnel junction material for high-speed toggle magnetic random access memory</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>We report the first demonstration of a magnetoresistive random access memory (MRAM) circuit incorporating MgO-based magnetic tunnel junction (MTJ) material for higher performance. We compare our results to those of AlOx-based devices, and we discuss the MTJ process optimization and material changes that made the demonstration possible.We present data on key MTJ material attributes for different oxidation processes and free-layer alloys, including resistance distributions, bias dependence, free-layer magnetic properties, interlayer coupling, breakdown voltage, and thermal endurance. A tunneling magnetoresistance (TMR) greater than 230% was achieved with CoFeB free layers and greater than 85% with NiFe free layers. Although the TMR with NiFe is at the low end of our MgO comparison, even this MTJ material enables faster access times, since its TMR is almost double that of a similar structure with an AlOx barrier. Bit-to-bit resistance distributions are somewhat wider for MgO barriers, with sigma about 1.5% compared to about 0.9% for AlOx. The read access time of our 4 Mb toggle MRAM circuit was reduced from 21 ns with AlOx to a circuit-limited 17 ns with MgO.</description><subject>Access time</subject><subject>Annealing</subject><subject>Circuits</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Endurance</subject><subject>Exact sciences and technology</subject><subject>Interlayers</subject><subject>Intermetallic compounds</subject><subject>Intermetallics</subject><subject>Iron compounds</subject><subject>Junctions</subject><subject>Magnesium oxide</subject><subject>Magnetic properties</subject><subject>magnetic random access memory (MRAM)</subject><subject>magnetic tunnel junction (MTJ)</subject><subject>Magnetic tunneling</subject><subject>Magnetism</subject><subject>Magnetoresistance</subject><subject>Magnetoresistive random access memory</subject><subject>Magnetoresistivity</subject><subject>Materials science</subject><subject>MgO</subject><subject>Nickel base alloys</subject><subject>Nickel compounds</subject><subject>Optimization</subject><subject>Other topics in materials science</subject><subject>Oxidation</subject><subject>Oxidation resistance</subject><subject>Physics</subject><subject>Random access memory</subject><subject>Resistance</subject><subject>room-temperature</subject><subject>Sputtering</subject><subject>Temperature measurement</subject><subject>Thermal resistance</subject><subject>toggle switching</subject><subject>Tunnel junctions</subject><subject>tunneling magnetoresistance(TMR)</subject><issn>0018-9464</issn><issn>1941-0069</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc-L1DAUx4soOI7eBS9FkfVgx5c2P4_Drq7CLntZ9xrS9LWTsW3GpEX2vzelywqCnkLyPu_xvvlk2WsCO0JAfbq93l_uSgC-k0IIWj3JNkRRUqQX9TTbABBZKMrp8-xFjMd0pYzAJru77m6K2kRs8mkeR-zz4zzayfkxH8yEwZk-b33ID647FPGEC-e7rsdU7kacnM2DGRs_5MZajDEfcPDh_mX2rDV9xFcP5zb7_uXz7fnX4urm8tv5_qqwjPCpaJghvOGUUQLWIGuItDVSLKVBUwmqbNM0NQcBtW0lIFDRstpKy5hktrTVNvu4zo2_8DTX-hTcYMK99sbpC3e31z50-sd00ITJ9Cnb7GzFT8H_nDFOenDRYt-bEf0ctZSqUqAIJPLDf0nCBakksIon9O1f6NHPYUyxteSMCg5MJejdv6CSQuKStSpRsFI2-BgDto-BCOhFs14060WzXjWnlvcPg020pm-TDevinz6hlCjVssCblXOI-FhOYRVJSX4Dm--v1g</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Dave, Renu W.</creator><creator>Steiner, G.</creator><creator>Slaughter, J. M.</creator><creator>Sun, J. J.</creator><creator>Craigo, B.</creator><creator>Pietambaram, S.</creator><creator>Smith, K.</creator><creator>Grynkewich, G.</creator><creator>DeHerrera, M.</creator><creator>Akerman, J.</creator><creator>Tehrani, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7QF</scope><scope>F28</scope><scope>FR3</scope><scope>7TK</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>20060801</creationdate><title>MgO-based tunnel junction material for high-speed toggle magnetic random access memory</title><author>Dave, Renu W. ; Steiner, G. ; Slaughter, J. M. ; Sun, J. J. ; Craigo, B. ; Pietambaram, S. ; Smith, K. ; Grynkewich, G. ; DeHerrera, M. ; Akerman, J. ; Tehrani, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-d5a16d645410cae5d18cbe4e28aea3749cdddb6070bcf80e047f5bc8c5585c2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Access time</topic><topic>Annealing</topic><topic>Circuits</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Endurance</topic><topic>Exact sciences and technology</topic><topic>Interlayers</topic><topic>Intermetallic compounds</topic><topic>Intermetallics</topic><topic>Iron compounds</topic><topic>Junctions</topic><topic>Magnesium oxide</topic><topic>Magnetic properties</topic><topic>magnetic random access memory (MRAM)</topic><topic>magnetic tunnel junction (MTJ)</topic><topic>Magnetic tunneling</topic><topic>Magnetism</topic><topic>Magnetoresistance</topic><topic>Magnetoresistive random access memory</topic><topic>Magnetoresistivity</topic><topic>Materials science</topic><topic>MgO</topic><topic>Nickel base alloys</topic><topic>Nickel compounds</topic><topic>Optimization</topic><topic>Other topics in materials science</topic><topic>Oxidation</topic><topic>Oxidation resistance</topic><topic>Physics</topic><topic>Random access memory</topic><topic>Resistance</topic><topic>room-temperature</topic><topic>Sputtering</topic><topic>Temperature measurement</topic><topic>Thermal resistance</topic><topic>toggle switching</topic><topic>Tunnel junctions</topic><topic>tunneling magnetoresistance(TMR)</topic><toplevel>online_resources</toplevel><creatorcontrib>Dave, Renu W.</creatorcontrib><creatorcontrib>Steiner, G.</creatorcontrib><creatorcontrib>Slaughter, J. M.</creatorcontrib><creatorcontrib>Sun, J. J.</creatorcontrib><creatorcontrib>Craigo, B.</creatorcontrib><creatorcontrib>Pietambaram, S.</creatorcontrib><creatorcontrib>Smith, K.</creatorcontrib><creatorcontrib>Grynkewich, G.</creatorcontrib><creatorcontrib>DeHerrera, M.</creatorcontrib><creatorcontrib>Akerman, J.</creatorcontrib><creatorcontrib>Tehrani, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Neurosciences Abstracts</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dave, Renu W.</au><au>Steiner, G.</au><au>Slaughter, J. M.</au><au>Sun, J. J.</au><au>Craigo, B.</au><au>Pietambaram, S.</au><au>Smith, K.</au><au>Grynkewich, G.</au><au>DeHerrera, M.</au><au>Akerman, J.</au><au>Tehrani, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MgO-based tunnel junction material for high-speed toggle magnetic random access memory</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2006-08-01</date><risdate>2006</risdate><volume>42</volume><issue>8</issue><spage>1935</spage><epage>1939</epage><pages>1935-1939</pages><issn>0018-9464</issn><issn>1941-0069</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>We report the first demonstration of a magnetoresistive random access memory (MRAM) circuit incorporating MgO-based magnetic tunnel junction (MTJ) material for higher performance. We compare our results to those of AlOx-based devices, and we discuss the MTJ process optimization and material changes that made the demonstration possible.We present data on key MTJ material attributes for different oxidation processes and free-layer alloys, including resistance distributions, bias dependence, free-layer magnetic properties, interlayer coupling, breakdown voltage, and thermal endurance. A tunneling magnetoresistance (TMR) greater than 230% was achieved with CoFeB free layers and greater than 85% with NiFe free layers. Although the TMR with NiFe is at the low end of our MgO comparison, even this MTJ material enables faster access times, since its TMR is almost double that of a similar structure with an AlOx barrier. Bit-to-bit resistance distributions are somewhat wider for MgO barriers, with sigma about 1.5% compared to about 0.9% for AlOx. The read access time of our 4 Mb toggle MRAM circuit was reduced from 21 ns with AlOx to a circuit-limited 17 ns with MgO.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2006.877743</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2006-08, Vol.42 (8), p.1935-1939 |
issn | 0018-9464 1941-0069 1941-0069 |
language | eng |
recordid | cdi_proquest_miscellaneous_889390910 |
source | IEEE Electronic Library (IEL) |
subjects | Access time Annealing Circuits Cross-disciplinary physics: materials science rheology Endurance Exact sciences and technology Interlayers Intermetallic compounds Intermetallics Iron compounds Junctions Magnesium oxide Magnetic properties magnetic random access memory (MRAM) magnetic tunnel junction (MTJ) Magnetic tunneling Magnetism Magnetoresistance Magnetoresistive random access memory Magnetoresistivity Materials science MgO Nickel base alloys Nickel compounds Optimization Other topics in materials science Oxidation Oxidation resistance Physics Random access memory Resistance room-temperature Sputtering Temperature measurement Thermal resistance toggle switching Tunnel junctions tunneling magnetoresistance(TMR) |
title | MgO-based tunnel junction material for high-speed toggle magnetic random access memory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A15%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MgO-based%20tunnel%20junction%20material%20for%20high-speed%20toggle%20magnetic%20random%20access%20memory&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Dave,%20Renu%20W.&rft.date=2006-08-01&rft.volume=42&rft.issue=8&rft.spage=1935&rft.epage=1939&rft.pages=1935-1939&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2006.877743&rft_dat=%3Cproquest_RIE%3E889390910%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2408658773&rft_id=info:pmid/&rft_ieee_id=9099171&rfr_iscdi=true |