Thermal and mechanical characterization of polymer composites filled with dispersed zeolite and oil shale

The thermal, viscoelastic, mechanical behavior of polymers filled with dispersed zeolite and oil shale is studied as a function of temperature, grain size, and filler concentration. It was found that the thermal conductivity of epoxy—zeolite composite increases with different zeolite grain sizes and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of composite materials 2011-06, Vol.45 (11), p.1209-1216
Hauptverfasser: Zihlif, A.M., Elimat, Ziad, Ragosta, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1216
container_issue 11
container_start_page 1209
container_title Journal of composite materials
container_volume 45
creator Zihlif, A.M.
Elimat, Ziad
Ragosta, G.
description The thermal, viscoelastic, mechanical behavior of polymers filled with dispersed zeolite and oil shale is studied as a function of temperature, grain size, and filler concentration. It was found that the thermal conductivity of epoxy—zeolite composite increases with different zeolite grain sizes and takes a higher value in case of the 63 μm grain size composite. The observed enhancement in the thermal conductivity of zeolite composites correlates well with that of the electrical conductivity. The thermodynamic results exhibit a slight increase in the glass transition temperature of the polystyrene/oil shale composites, and shift in the observed relaxation peaks with increasing the oil shale content. The plastic deformation of PS/oil shale composites shows that the elastic modulus increases and the compressive yield stress decreases with oil shale content. The Eyring theory of yielding could predict the dependence of the yield stress on the applied strain rate. The predicted activation volume and activation energy showed dependence on the oil shale grains sizes and content.
doi_str_mv 10.1177/0021998310380288
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889386897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0021998310380288</sage_id><sourcerecordid>889386897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-567fcaacec88395e8a2a671acefa766b3c126c90157cf6ff30eb613e7756f9943</originalsourceid><addsrcrecordid>eNp1UDlLBDEUDqLgevSWacRqNJnM5ChFvECwUbAbntkXN0tmMiaziP56s-5iIVi94zt47yPkhLNzzpW6YKzmxmjBmdCs1nqHzHgrWKWMeNklszVcrfF9cpDzkjGmeCNnxD8tMPUQKAxz2qNdwOBtGUuTwE6Y_BdMPg40OjrG8Nljojb2Y8x-wkydDwHn9MNPCzr3ecSUy_iFMRT4xzP6QPMCAh6RPQch4_G2HpLnm-unq7vq4fH2_uryobLl8KlqpXIWwKLVWpgWNdQgFS8LB0rKV2F5La1hvFXWSecEw1fJBSrVSmdMIw7J2cZ3TPF9hXnqep8thgADxlXutDZCS21UYbIN06aYc0LXjcn3kD47zrp1qN3fUIvkdGsOucTkEgzW519d3YiGNU1deNWGl-ENu2VcpaH8_L_vN8ZThaE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889386897</pqid></control><display><type>article</type><title>Thermal and mechanical characterization of polymer composites filled with dispersed zeolite and oil shale</title><source>Access via SAGE</source><creator>Zihlif, A.M. ; Elimat, Ziad ; Ragosta, G.</creator><creatorcontrib>Zihlif, A.M. ; Elimat, Ziad ; Ragosta, G.</creatorcontrib><description>The thermal, viscoelastic, mechanical behavior of polymers filled with dispersed zeolite and oil shale is studied as a function of temperature, grain size, and filler concentration. It was found that the thermal conductivity of epoxy—zeolite composite increases with different zeolite grain sizes and takes a higher value in case of the 63 μm grain size composite. The observed enhancement in the thermal conductivity of zeolite composites correlates well with that of the electrical conductivity. The thermodynamic results exhibit a slight increase in the glass transition temperature of the polystyrene/oil shale composites, and shift in the observed relaxation peaks with increasing the oil shale content. The plastic deformation of PS/oil shale composites shows that the elastic modulus increases and the compressive yield stress decreases with oil shale content. The Eyring theory of yielding could predict the dependence of the yield stress on the applied strain rate. The predicted activation volume and activation energy showed dependence on the oil shale grains sizes and content.</description><identifier>ISSN: 0021-9983</identifier><identifier>EISSN: 1530-793X</identifier><identifier>DOI: 10.1177/0021998310380288</identifier><identifier>CODEN: JCOMBI</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Activation energy ; Applied sciences ; Composites ; Dispersion ; Exact sciences and technology ; Forms of application and semi-finished materials ; Fundamental areas of phenomenology (including applications) ; Grain size ; Heat conduction ; Heat transfer ; Mechanical properties ; Oil shale ; Organic polymers ; Physicochemistry of polymers ; Physics ; Polymer industry, paints, wood ; Polystyrene resins ; Properties and characterization ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Technology of polymers ; Thermal conductivity ; Yield stress ; Zeolites</subject><ispartof>Journal of composite materials, 2011-06, Vol.45 (11), p.1209-1216</ispartof><rights>The Author(s) 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-567fcaacec88395e8a2a671acefa766b3c126c90157cf6ff30eb613e7756f9943</citedby><cites>FETCH-LOGICAL-c380t-567fcaacec88395e8a2a671acefa766b3c126c90157cf6ff30eb613e7756f9943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0021998310380288$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0021998310380288$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24340442$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zihlif, A.M.</creatorcontrib><creatorcontrib>Elimat, Ziad</creatorcontrib><creatorcontrib>Ragosta, G.</creatorcontrib><title>Thermal and mechanical characterization of polymer composites filled with dispersed zeolite and oil shale</title><title>Journal of composite materials</title><description>The thermal, viscoelastic, mechanical behavior of polymers filled with dispersed zeolite and oil shale is studied as a function of temperature, grain size, and filler concentration. It was found that the thermal conductivity of epoxy—zeolite composite increases with different zeolite grain sizes and takes a higher value in case of the 63 μm grain size composite. The observed enhancement in the thermal conductivity of zeolite composites correlates well with that of the electrical conductivity. The thermodynamic results exhibit a slight increase in the glass transition temperature of the polystyrene/oil shale composites, and shift in the observed relaxation peaks with increasing the oil shale content. The plastic deformation of PS/oil shale composites shows that the elastic modulus increases and the compressive yield stress decreases with oil shale content. The Eyring theory of yielding could predict the dependence of the yield stress on the applied strain rate. The predicted activation volume and activation energy showed dependence on the oil shale grains sizes and content.</description><subject>Activation energy</subject><subject>Applied sciences</subject><subject>Composites</subject><subject>Dispersion</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Grain size</subject><subject>Heat conduction</subject><subject>Heat transfer</subject><subject>Mechanical properties</subject><subject>Oil shale</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Physics</subject><subject>Polymer industry, paints, wood</subject><subject>Polystyrene resins</subject><subject>Properties and characterization</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Technology of polymers</subject><subject>Thermal conductivity</subject><subject>Yield stress</subject><subject>Zeolites</subject><issn>0021-9983</issn><issn>1530-793X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1UDlLBDEUDqLgevSWacRqNJnM5ChFvECwUbAbntkXN0tmMiaziP56s-5iIVi94zt47yPkhLNzzpW6YKzmxmjBmdCs1nqHzHgrWKWMeNklszVcrfF9cpDzkjGmeCNnxD8tMPUQKAxz2qNdwOBtGUuTwE6Y_BdMPg40OjrG8Nljojb2Y8x-wkydDwHn9MNPCzr3ecSUy_iFMRT4xzP6QPMCAh6RPQch4_G2HpLnm-unq7vq4fH2_uryobLl8KlqpXIWwKLVWpgWNdQgFS8LB0rKV2F5La1hvFXWSecEw1fJBSrVSmdMIw7J2cZ3TPF9hXnqep8thgADxlXutDZCS21UYbIN06aYc0LXjcn3kD47zrp1qN3fUIvkdGsOucTkEgzW519d3YiGNU1deNWGl-ENu2VcpaH8_L_vN8ZThaE</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Zihlif, A.M.</creator><creator>Elimat, Ziad</creator><creator>Ragosta, G.</creator><general>SAGE Publications</general><general>Sage Publications</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20110601</creationdate><title>Thermal and mechanical characterization of polymer composites filled with dispersed zeolite and oil shale</title><author>Zihlif, A.M. ; Elimat, Ziad ; Ragosta, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-567fcaacec88395e8a2a671acefa766b3c126c90157cf6ff30eb613e7756f9943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Activation energy</topic><topic>Applied sciences</topic><topic>Composites</topic><topic>Dispersion</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Grain size</topic><topic>Heat conduction</topic><topic>Heat transfer</topic><topic>Mechanical properties</topic><topic>Oil shale</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Physics</topic><topic>Polymer industry, paints, wood</topic><topic>Polystyrene resins</topic><topic>Properties and characterization</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Technology of polymers</topic><topic>Thermal conductivity</topic><topic>Yield stress</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zihlif, A.M.</creatorcontrib><creatorcontrib>Elimat, Ziad</creatorcontrib><creatorcontrib>Ragosta, G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of composite materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zihlif, A.M.</au><au>Elimat, Ziad</au><au>Ragosta, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal and mechanical characterization of polymer composites filled with dispersed zeolite and oil shale</atitle><jtitle>Journal of composite materials</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>45</volume><issue>11</issue><spage>1209</spage><epage>1216</epage><pages>1209-1216</pages><issn>0021-9983</issn><eissn>1530-793X</eissn><coden>JCOMBI</coden><abstract>The thermal, viscoelastic, mechanical behavior of polymers filled with dispersed zeolite and oil shale is studied as a function of temperature, grain size, and filler concentration. It was found that the thermal conductivity of epoxy—zeolite composite increases with different zeolite grain sizes and takes a higher value in case of the 63 μm grain size composite. The observed enhancement in the thermal conductivity of zeolite composites correlates well with that of the electrical conductivity. The thermodynamic results exhibit a slight increase in the glass transition temperature of the polystyrene/oil shale composites, and shift in the observed relaxation peaks with increasing the oil shale content. The plastic deformation of PS/oil shale composites shows that the elastic modulus increases and the compressive yield stress decreases with oil shale content. The Eyring theory of yielding could predict the dependence of the yield stress on the applied strain rate. The predicted activation volume and activation energy showed dependence on the oil shale grains sizes and content.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0021998310380288</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9983
ispartof Journal of composite materials, 2011-06, Vol.45 (11), p.1209-1216
issn 0021-9983
1530-793X
language eng
recordid cdi_proquest_miscellaneous_889386897
source Access via SAGE
subjects Activation energy
Applied sciences
Composites
Dispersion
Exact sciences and technology
Forms of application and semi-finished materials
Fundamental areas of phenomenology (including applications)
Grain size
Heat conduction
Heat transfer
Mechanical properties
Oil shale
Organic polymers
Physicochemistry of polymers
Physics
Polymer industry, paints, wood
Polystyrene resins
Properties and characterization
Solid mechanics
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
Technology of polymers
Thermal conductivity
Yield stress
Zeolites
title Thermal and mechanical characterization of polymer composites filled with dispersed zeolite and oil shale
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A09%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20and%20mechanical%20characterization%20of%20polymer%20composites%20filled%20with%20dispersed%20zeolite%20and%20oil%20shale&rft.jtitle=Journal%20of%20composite%20materials&rft.au=Zihlif,%20A.M.&rft.date=2011-06-01&rft.volume=45&rft.issue=11&rft.spage=1209&rft.epage=1216&rft.pages=1209-1216&rft.issn=0021-9983&rft.eissn=1530-793X&rft.coden=JCOMBI&rft_id=info:doi/10.1177/0021998310380288&rft_dat=%3Cproquest_cross%3E889386897%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889386897&rft_id=info:pmid/&rft_sage_id=10.1177_0021998310380288&rfr_iscdi=true