Thermal and mechanical characterization of polymer composites filled with dispersed zeolite and oil shale
The thermal, viscoelastic, mechanical behavior of polymers filled with dispersed zeolite and oil shale is studied as a function of temperature, grain size, and filler concentration. It was found that the thermal conductivity of epoxy—zeolite composite increases with different zeolite grain sizes and...
Gespeichert in:
Veröffentlicht in: | Journal of composite materials 2011-06, Vol.45 (11), p.1209-1216 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1216 |
---|---|
container_issue | 11 |
container_start_page | 1209 |
container_title | Journal of composite materials |
container_volume | 45 |
creator | Zihlif, A.M. Elimat, Ziad Ragosta, G. |
description | The thermal, viscoelastic, mechanical behavior of polymers filled with dispersed zeolite and oil shale is studied as a function of temperature, grain size, and filler concentration. It was found that the thermal conductivity of epoxy—zeolite composite increases with different zeolite grain sizes and takes a higher value in case of the 63 μm grain size composite. The observed enhancement in the thermal conductivity of zeolite composites correlates well with that of the electrical conductivity. The thermodynamic results exhibit a slight increase in the glass transition temperature of the polystyrene/oil shale composites, and shift in the observed relaxation peaks with increasing the oil shale content. The plastic deformation of PS/oil shale composites shows that the elastic modulus increases and the compressive yield stress decreases with oil shale content. The Eyring theory of yielding could predict the dependence of the yield stress on the applied strain rate. The predicted activation volume and activation energy showed dependence on the oil shale grains sizes and content. |
doi_str_mv | 10.1177/0021998310380288 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889386897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0021998310380288</sage_id><sourcerecordid>889386897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-567fcaacec88395e8a2a671acefa766b3c126c90157cf6ff30eb613e7756f9943</originalsourceid><addsrcrecordid>eNp1UDlLBDEUDqLgevSWacRqNJnM5ChFvECwUbAbntkXN0tmMiaziP56s-5iIVi94zt47yPkhLNzzpW6YKzmxmjBmdCs1nqHzHgrWKWMeNklszVcrfF9cpDzkjGmeCNnxD8tMPUQKAxz2qNdwOBtGUuTwE6Y_BdMPg40OjrG8Nljojb2Y8x-wkydDwHn9MNPCzr3ecSUy_iFMRT4xzP6QPMCAh6RPQch4_G2HpLnm-unq7vq4fH2_uryobLl8KlqpXIWwKLVWpgWNdQgFS8LB0rKV2F5La1hvFXWSecEw1fJBSrVSmdMIw7J2cZ3TPF9hXnqep8thgADxlXutDZCS21UYbIN06aYc0LXjcn3kD47zrp1qN3fUIvkdGsOucTkEgzW519d3YiGNU1deNWGl-ENu2VcpaH8_L_vN8ZThaE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889386897</pqid></control><display><type>article</type><title>Thermal and mechanical characterization of polymer composites filled with dispersed zeolite and oil shale</title><source>Access via SAGE</source><creator>Zihlif, A.M. ; Elimat, Ziad ; Ragosta, G.</creator><creatorcontrib>Zihlif, A.M. ; Elimat, Ziad ; Ragosta, G.</creatorcontrib><description>The thermal, viscoelastic, mechanical behavior of polymers filled with dispersed zeolite and oil shale is studied as a function of temperature, grain size, and filler concentration. It was found that the thermal conductivity of epoxy—zeolite composite increases with different zeolite grain sizes and takes a higher value in case of the 63 μm grain size composite. The observed enhancement in the thermal conductivity of zeolite composites correlates well with that of the electrical conductivity. The thermodynamic results exhibit a slight increase in the glass transition temperature of the polystyrene/oil shale composites, and shift in the observed relaxation peaks with increasing the oil shale content. The plastic deformation of PS/oil shale composites shows that the elastic modulus increases and the compressive yield stress decreases with oil shale content. The Eyring theory of yielding could predict the dependence of the yield stress on the applied strain rate. The predicted activation volume and activation energy showed dependence on the oil shale grains sizes and content.</description><identifier>ISSN: 0021-9983</identifier><identifier>EISSN: 1530-793X</identifier><identifier>DOI: 10.1177/0021998310380288</identifier><identifier>CODEN: JCOMBI</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Activation energy ; Applied sciences ; Composites ; Dispersion ; Exact sciences and technology ; Forms of application and semi-finished materials ; Fundamental areas of phenomenology (including applications) ; Grain size ; Heat conduction ; Heat transfer ; Mechanical properties ; Oil shale ; Organic polymers ; Physicochemistry of polymers ; Physics ; Polymer industry, paints, wood ; Polystyrene resins ; Properties and characterization ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Technology of polymers ; Thermal conductivity ; Yield stress ; Zeolites</subject><ispartof>Journal of composite materials, 2011-06, Vol.45 (11), p.1209-1216</ispartof><rights>The Author(s) 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-567fcaacec88395e8a2a671acefa766b3c126c90157cf6ff30eb613e7756f9943</citedby><cites>FETCH-LOGICAL-c380t-567fcaacec88395e8a2a671acefa766b3c126c90157cf6ff30eb613e7756f9943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0021998310380288$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0021998310380288$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24340442$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zihlif, A.M.</creatorcontrib><creatorcontrib>Elimat, Ziad</creatorcontrib><creatorcontrib>Ragosta, G.</creatorcontrib><title>Thermal and mechanical characterization of polymer composites filled with dispersed zeolite and oil shale</title><title>Journal of composite materials</title><description>The thermal, viscoelastic, mechanical behavior of polymers filled with dispersed zeolite and oil shale is studied as a function of temperature, grain size, and filler concentration. It was found that the thermal conductivity of epoxy—zeolite composite increases with different zeolite grain sizes and takes a higher value in case of the 63 μm grain size composite. The observed enhancement in the thermal conductivity of zeolite composites correlates well with that of the electrical conductivity. The thermodynamic results exhibit a slight increase in the glass transition temperature of the polystyrene/oil shale composites, and shift in the observed relaxation peaks with increasing the oil shale content. The plastic deformation of PS/oil shale composites shows that the elastic modulus increases and the compressive yield stress decreases with oil shale content. The Eyring theory of yielding could predict the dependence of the yield stress on the applied strain rate. The predicted activation volume and activation energy showed dependence on the oil shale grains sizes and content.</description><subject>Activation energy</subject><subject>Applied sciences</subject><subject>Composites</subject><subject>Dispersion</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Grain size</subject><subject>Heat conduction</subject><subject>Heat transfer</subject><subject>Mechanical properties</subject><subject>Oil shale</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Physics</subject><subject>Polymer industry, paints, wood</subject><subject>Polystyrene resins</subject><subject>Properties and characterization</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Technology of polymers</subject><subject>Thermal conductivity</subject><subject>Yield stress</subject><subject>Zeolites</subject><issn>0021-9983</issn><issn>1530-793X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1UDlLBDEUDqLgevSWacRqNJnM5ChFvECwUbAbntkXN0tmMiaziP56s-5iIVi94zt47yPkhLNzzpW6YKzmxmjBmdCs1nqHzHgrWKWMeNklszVcrfF9cpDzkjGmeCNnxD8tMPUQKAxz2qNdwOBtGUuTwE6Y_BdMPg40OjrG8Nljojb2Y8x-wkydDwHn9MNPCzr3ecSUy_iFMRT4xzP6QPMCAh6RPQch4_G2HpLnm-unq7vq4fH2_uryobLl8KlqpXIWwKLVWpgWNdQgFS8LB0rKV2F5La1hvFXWSecEw1fJBSrVSmdMIw7J2cZ3TPF9hXnqep8thgADxlXutDZCS21UYbIN06aYc0LXjcn3kD47zrp1qN3fUIvkdGsOucTkEgzW519d3YiGNU1deNWGl-ENu2VcpaH8_L_vN8ZThaE</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Zihlif, A.M.</creator><creator>Elimat, Ziad</creator><creator>Ragosta, G.</creator><general>SAGE Publications</general><general>Sage Publications</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20110601</creationdate><title>Thermal and mechanical characterization of polymer composites filled with dispersed zeolite and oil shale</title><author>Zihlif, A.M. ; Elimat, Ziad ; Ragosta, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-567fcaacec88395e8a2a671acefa766b3c126c90157cf6ff30eb613e7756f9943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Activation energy</topic><topic>Applied sciences</topic><topic>Composites</topic><topic>Dispersion</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Grain size</topic><topic>Heat conduction</topic><topic>Heat transfer</topic><topic>Mechanical properties</topic><topic>Oil shale</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Physics</topic><topic>Polymer industry, paints, wood</topic><topic>Polystyrene resins</topic><topic>Properties and characterization</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Technology of polymers</topic><topic>Thermal conductivity</topic><topic>Yield stress</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zihlif, A.M.</creatorcontrib><creatorcontrib>Elimat, Ziad</creatorcontrib><creatorcontrib>Ragosta, G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of composite materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zihlif, A.M.</au><au>Elimat, Ziad</au><au>Ragosta, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal and mechanical characterization of polymer composites filled with dispersed zeolite and oil shale</atitle><jtitle>Journal of composite materials</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>45</volume><issue>11</issue><spage>1209</spage><epage>1216</epage><pages>1209-1216</pages><issn>0021-9983</issn><eissn>1530-793X</eissn><coden>JCOMBI</coden><abstract>The thermal, viscoelastic, mechanical behavior of polymers filled with dispersed zeolite and oil shale is studied as a function of temperature, grain size, and filler concentration. It was found that the thermal conductivity of epoxy—zeolite composite increases with different zeolite grain sizes and takes a higher value in case of the 63 μm grain size composite. The observed enhancement in the thermal conductivity of zeolite composites correlates well with that of the electrical conductivity. The thermodynamic results exhibit a slight increase in the glass transition temperature of the polystyrene/oil shale composites, and shift in the observed relaxation peaks with increasing the oil shale content. The plastic deformation of PS/oil shale composites shows that the elastic modulus increases and the compressive yield stress decreases with oil shale content. The Eyring theory of yielding could predict the dependence of the yield stress on the applied strain rate. The predicted activation volume and activation energy showed dependence on the oil shale grains sizes and content.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0021998310380288</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9983 |
ispartof | Journal of composite materials, 2011-06, Vol.45 (11), p.1209-1216 |
issn | 0021-9983 1530-793X |
language | eng |
recordid | cdi_proquest_miscellaneous_889386897 |
source | Access via SAGE |
subjects | Activation energy Applied sciences Composites Dispersion Exact sciences and technology Forms of application and semi-finished materials Fundamental areas of phenomenology (including applications) Grain size Heat conduction Heat transfer Mechanical properties Oil shale Organic polymers Physicochemistry of polymers Physics Polymer industry, paints, wood Polystyrene resins Properties and characterization Solid mechanics Static elasticity (thermoelasticity...) Structural and continuum mechanics Technology of polymers Thermal conductivity Yield stress Zeolites |
title | Thermal and mechanical characterization of polymer composites filled with dispersed zeolite and oil shale |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A09%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20and%20mechanical%20characterization%20of%20polymer%20composites%20filled%20with%20dispersed%20zeolite%20and%20oil%20shale&rft.jtitle=Journal%20of%20composite%20materials&rft.au=Zihlif,%20A.M.&rft.date=2011-06-01&rft.volume=45&rft.issue=11&rft.spage=1209&rft.epage=1216&rft.pages=1209-1216&rft.issn=0021-9983&rft.eissn=1530-793X&rft.coden=JCOMBI&rft_id=info:doi/10.1177/0021998310380288&rft_dat=%3Cproquest_cross%3E889386897%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889386897&rft_id=info:pmid/&rft_sage_id=10.1177_0021998310380288&rfr_iscdi=true |