Partition arguments in multiparty communication complexity
Consider the “Number in Hand” multiparty communication complexity model, where k players holding inputs x 1 , … , x k ∈ { 0 , 1 } n communicate to compute the value f ( x 1 , … , x k ) of a function f known to all of them. The main lower bound technique for the communication complexity of such probl...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2011-05, Vol.412 (24), p.2611-2622 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2622 |
---|---|
container_issue | 24 |
container_start_page | 2611 |
container_title | Theoretical computer science |
container_volume | 412 |
creator | Draisma, Jan Kushilevitz, Eyal Weinreb, Enav |
description | Consider the “Number in Hand” multiparty communication complexity model, where
k
players holding inputs
x
1
,
…
,
x
k
∈
{
0
,
1
}
n
communicate to compute the value
f
(
x
1
,
…
,
x
k
)
of a function
f
known to all of them. The main lower bound technique for the communication complexity of such problems is that of
partition arguments: partition the
k
players into two disjoint sets of players and find a lower bound for the induced two-party communication complexity problem.
In this paper, we study the power of partition arguments. Our two main results are very different in nature:
(i)
For
randomized communication complexity, we show that partition arguments may yield bounds that are exponentially far from the true communication complexity. Specifically, we prove that there exists a
3
-argument function
f
whose communication complexity is
Ω
(
n
)
, while partition arguments can only yield an
Ω
(
log
n
)
lower bound. The same holds for
nondeterministiccommunication complexity.
(ii)
For
deterministic communication complexity, we prove that finding significant gaps between the true communication complexity and the best lower bound that can be obtained via partition arguments, would imply progress on a generalized version of the “log-rank conjecture” in communication complexity. We also observe that, in the case of computing
relations (search problems), very large gaps do exist.
We conclude with two results on the multiparty “fooling set technique”, another method for obtaining communication complexity lower bounds. |
doi_str_mv | 10.1016/j.tcs.2010.01.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889384142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397510000435</els_id><sourcerecordid>889384142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-238a7d6e61b1062f9884112f637946c5730a71a0331a569c05a5124931dad3ce3</originalsourceid><addsrcrecordid>eNp9UMtKBDEQDKLguvoB3ubmadZ0MpOHnkR8wYIe9BxipkeyzMskI-7fm3U92xQ0RVcVdBFyDnQFFMTlZpVcXDGaOYUMdUAWoKQuGdPVIVlQTquSa1kfk5MYNzRPLcWCXL3YkHzy41DY8DH3OKRY-KHo5y75Kd-2hRv7fh68s7-qzKYOv33anpKj1nYRz_72krzd373ePpbr54en25t16bhkqWRcWdkIFPAOVLBWK1UBsFZwqSvhasmplWAp52BroR2tbQ2s0hwa23CHfEku9rlTGD9njMn0PjrsOjvgOEejlOY5smJZCXulC2OMAVszBd_bsDVAza4mszG5JrOryVDIUNlzvfdgfuHLYzDReRwcNj6gS6YZ_T_uHx6tb4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889384142</pqid></control><display><type>article</type><title>Partition arguments in multiparty communication complexity</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Draisma, Jan ; Kushilevitz, Eyal ; Weinreb, Enav</creator><creatorcontrib>Draisma, Jan ; Kushilevitz, Eyal ; Weinreb, Enav</creatorcontrib><description>Consider the “Number in Hand” multiparty communication complexity model, where
k
players holding inputs
x
1
,
…
,
x
k
∈
{
0
,
1
}
n
communicate to compute the value
f
(
x
1
,
…
,
x
k
)
of a function
f
known to all of them. The main lower bound technique for the communication complexity of such problems is that of
partition arguments: partition the
k
players into two disjoint sets of players and find a lower bound for the induced two-party communication complexity problem.
In this paper, we study the power of partition arguments. Our two main results are very different in nature:
(i)
For
randomized communication complexity, we show that partition arguments may yield bounds that are exponentially far from the true communication complexity. Specifically, we prove that there exists a
3
-argument function
f
whose communication complexity is
Ω
(
n
)
, while partition arguments can only yield an
Ω
(
log
n
)
lower bound. The same holds for
nondeterministiccommunication complexity.
(ii)
For
deterministic communication complexity, we prove that finding significant gaps between the true communication complexity and the best lower bound that can be obtained via partition arguments, would imply progress on a generalized version of the “log-rank conjecture” in communication complexity. We also observe that, in the case of computing
relations (search problems), very large gaps do exist.
We conclude with two results on the multiparty “fooling set technique”, another method for obtaining communication complexity lower bounds.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2010.01.018</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Communication complexity ; Complexity ; Computer simulation ; Gaps ; Log rank conjecture ; Lower bounds ; Mathematical analysis ; Mathematical models ; Multiparty communication complexity ; Partition arguments ; Partitions ; Players</subject><ispartof>Theoretical computer science, 2011-05, Vol.412 (24), p.2611-2622</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-238a7d6e61b1062f9884112f637946c5730a71a0331a569c05a5124931dad3ce3</citedby><cites>FETCH-LOGICAL-c372t-238a7d6e61b1062f9884112f637946c5730a71a0331a569c05a5124931dad3ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304397510000435$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Draisma, Jan</creatorcontrib><creatorcontrib>Kushilevitz, Eyal</creatorcontrib><creatorcontrib>Weinreb, Enav</creatorcontrib><title>Partition arguments in multiparty communication complexity</title><title>Theoretical computer science</title><description>Consider the “Number in Hand” multiparty communication complexity model, where
k
players holding inputs
x
1
,
…
,
x
k
∈
{
0
,
1
}
n
communicate to compute the value
f
(
x
1
,
…
,
x
k
)
of a function
f
known to all of them. The main lower bound technique for the communication complexity of such problems is that of
partition arguments: partition the
k
players into two disjoint sets of players and find a lower bound for the induced two-party communication complexity problem.
In this paper, we study the power of partition arguments. Our two main results are very different in nature:
(i)
For
randomized communication complexity, we show that partition arguments may yield bounds that are exponentially far from the true communication complexity. Specifically, we prove that there exists a
3
-argument function
f
whose communication complexity is
Ω
(
n
)
, while partition arguments can only yield an
Ω
(
log
n
)
lower bound. The same holds for
nondeterministiccommunication complexity.
(ii)
For
deterministic communication complexity, we prove that finding significant gaps between the true communication complexity and the best lower bound that can be obtained via partition arguments, would imply progress on a generalized version of the “log-rank conjecture” in communication complexity. We also observe that, in the case of computing
relations (search problems), very large gaps do exist.
We conclude with two results on the multiparty “fooling set technique”, another method for obtaining communication complexity lower bounds.</description><subject>Communication complexity</subject><subject>Complexity</subject><subject>Computer simulation</subject><subject>Gaps</subject><subject>Log rank conjecture</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multiparty communication complexity</subject><subject>Partition arguments</subject><subject>Partitions</subject><subject>Players</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKBDEQDKLguvoB3ubmadZ0MpOHnkR8wYIe9BxipkeyzMskI-7fm3U92xQ0RVcVdBFyDnQFFMTlZpVcXDGaOYUMdUAWoKQuGdPVIVlQTquSa1kfk5MYNzRPLcWCXL3YkHzy41DY8DH3OKRY-KHo5y75Kd-2hRv7fh68s7-qzKYOv33anpKj1nYRz_72krzd373ePpbr54en25t16bhkqWRcWdkIFPAOVLBWK1UBsFZwqSvhasmplWAp52BroR2tbQ2s0hwa23CHfEku9rlTGD9njMn0PjrsOjvgOEejlOY5smJZCXulC2OMAVszBd_bsDVAza4mszG5JrOryVDIUNlzvfdgfuHLYzDReRwcNj6gS6YZ_T_uHx6tb4Q</recordid><startdate>20110527</startdate><enddate>20110527</enddate><creator>Draisma, Jan</creator><creator>Kushilevitz, Eyal</creator><creator>Weinreb, Enav</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110527</creationdate><title>Partition arguments in multiparty communication complexity</title><author>Draisma, Jan ; Kushilevitz, Eyal ; Weinreb, Enav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-238a7d6e61b1062f9884112f637946c5730a71a0331a569c05a5124931dad3ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Communication complexity</topic><topic>Complexity</topic><topic>Computer simulation</topic><topic>Gaps</topic><topic>Log rank conjecture</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multiparty communication complexity</topic><topic>Partition arguments</topic><topic>Partitions</topic><topic>Players</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Draisma, Jan</creatorcontrib><creatorcontrib>Kushilevitz, Eyal</creatorcontrib><creatorcontrib>Weinreb, Enav</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Draisma, Jan</au><au>Kushilevitz, Eyal</au><au>Weinreb, Enav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partition arguments in multiparty communication complexity</atitle><jtitle>Theoretical computer science</jtitle><date>2011-05-27</date><risdate>2011</risdate><volume>412</volume><issue>24</issue><spage>2611</spage><epage>2622</epage><pages>2611-2622</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><abstract>Consider the “Number in Hand” multiparty communication complexity model, where
k
players holding inputs
x
1
,
…
,
x
k
∈
{
0
,
1
}
n
communicate to compute the value
f
(
x
1
,
…
,
x
k
)
of a function
f
known to all of them. The main lower bound technique for the communication complexity of such problems is that of
partition arguments: partition the
k
players into two disjoint sets of players and find a lower bound for the induced two-party communication complexity problem.
In this paper, we study the power of partition arguments. Our two main results are very different in nature:
(i)
For
randomized communication complexity, we show that partition arguments may yield bounds that are exponentially far from the true communication complexity. Specifically, we prove that there exists a
3
-argument function
f
whose communication complexity is
Ω
(
n
)
, while partition arguments can only yield an
Ω
(
log
n
)
lower bound. The same holds for
nondeterministiccommunication complexity.
(ii)
For
deterministic communication complexity, we prove that finding significant gaps between the true communication complexity and the best lower bound that can be obtained via partition arguments, would imply progress on a generalized version of the “log-rank conjecture” in communication complexity. We also observe that, in the case of computing
relations (search problems), very large gaps do exist.
We conclude with two results on the multiparty “fooling set technique”, another method for obtaining communication complexity lower bounds.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2010.01.018</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3975 |
ispartof | Theoretical computer science, 2011-05, Vol.412 (24), p.2611-2622 |
issn | 0304-3975 1879-2294 |
language | eng |
recordid | cdi_proquest_miscellaneous_889384142 |
source | Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Communication complexity Complexity Computer simulation Gaps Log rank conjecture Lower bounds Mathematical analysis Mathematical models Multiparty communication complexity Partition arguments Partitions Players |
title | Partition arguments in multiparty communication complexity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A24%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partition%20arguments%20in%20multiparty%20communication%20complexity&rft.jtitle=Theoretical%20computer%20science&rft.au=Draisma,%20Jan&rft.date=2011-05-27&rft.volume=412&rft.issue=24&rft.spage=2611&rft.epage=2622&rft.pages=2611-2622&rft.issn=0304-3975&rft.eissn=1879-2294&rft_id=info:doi/10.1016/j.tcs.2010.01.018&rft_dat=%3Cproquest_cross%3E889384142%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889384142&rft_id=info:pmid/&rft_els_id=S0304397510000435&rfr_iscdi=true |