Partition arguments in multiparty communication complexity

Consider the “Number in Hand” multiparty communication complexity model, where k players holding inputs x 1 , … , x k ∈ { 0 , 1 } n communicate to compute the value f ( x 1 , … , x k ) of a function f known to all of them. The main lower bound technique for the communication complexity of such probl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2011-05, Vol.412 (24), p.2611-2622
Hauptverfasser: Draisma, Jan, Kushilevitz, Eyal, Weinreb, Enav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2622
container_issue 24
container_start_page 2611
container_title Theoretical computer science
container_volume 412
creator Draisma, Jan
Kushilevitz, Eyal
Weinreb, Enav
description Consider the “Number in Hand” multiparty communication complexity model, where k players holding inputs x 1 , … , x k ∈ { 0 , 1 } n communicate to compute the value f ( x 1 , … , x k ) of a function f known to all of them. The main lower bound technique for the communication complexity of such problems is that of partition arguments: partition the k players into two disjoint sets of players and find a lower bound for the induced two-party communication complexity problem. In this paper, we study the power of partition arguments. Our two main results are very different in nature: (i) For randomized communication complexity, we show that partition arguments may yield bounds that are exponentially far from the true communication complexity. Specifically, we prove that there exists a 3 -argument function f whose communication complexity is Ω ( n ) , while partition arguments can only yield an Ω ( log n ) lower bound. The same holds for nondeterministiccommunication complexity. (ii) For deterministic communication complexity, we prove that finding significant gaps between the true communication complexity and the best lower bound that can be obtained via partition arguments, would imply progress on a generalized version of the “log-rank conjecture” in communication complexity. We also observe that, in the case of computing relations (search problems), very large gaps do exist. We conclude with two results on the multiparty “fooling set technique”, another method for obtaining communication complexity lower bounds.
doi_str_mv 10.1016/j.tcs.2010.01.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889384142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397510000435</els_id><sourcerecordid>889384142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-238a7d6e61b1062f9884112f637946c5730a71a0331a569c05a5124931dad3ce3</originalsourceid><addsrcrecordid>eNp9UMtKBDEQDKLguvoB3ubmadZ0MpOHnkR8wYIe9BxipkeyzMskI-7fm3U92xQ0RVcVdBFyDnQFFMTlZpVcXDGaOYUMdUAWoKQuGdPVIVlQTquSa1kfk5MYNzRPLcWCXL3YkHzy41DY8DH3OKRY-KHo5y75Kd-2hRv7fh68s7-qzKYOv33anpKj1nYRz_72krzd373ePpbr54en25t16bhkqWRcWdkIFPAOVLBWK1UBsFZwqSvhasmplWAp52BroR2tbQ2s0hwa23CHfEku9rlTGD9njMn0PjrsOjvgOEejlOY5smJZCXulC2OMAVszBd_bsDVAza4mszG5JrOryVDIUNlzvfdgfuHLYzDReRwcNj6gS6YZ_T_uHx6tb4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889384142</pqid></control><display><type>article</type><title>Partition arguments in multiparty communication complexity</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Draisma, Jan ; Kushilevitz, Eyal ; Weinreb, Enav</creator><creatorcontrib>Draisma, Jan ; Kushilevitz, Eyal ; Weinreb, Enav</creatorcontrib><description>Consider the “Number in Hand” multiparty communication complexity model, where k players holding inputs x 1 , … , x k ∈ { 0 , 1 } n communicate to compute the value f ( x 1 , … , x k ) of a function f known to all of them. The main lower bound technique for the communication complexity of such problems is that of partition arguments: partition the k players into two disjoint sets of players and find a lower bound for the induced two-party communication complexity problem. In this paper, we study the power of partition arguments. Our two main results are very different in nature: (i) For randomized communication complexity, we show that partition arguments may yield bounds that are exponentially far from the true communication complexity. Specifically, we prove that there exists a 3 -argument function f whose communication complexity is Ω ( n ) , while partition arguments can only yield an Ω ( log n ) lower bound. The same holds for nondeterministiccommunication complexity. (ii) For deterministic communication complexity, we prove that finding significant gaps between the true communication complexity and the best lower bound that can be obtained via partition arguments, would imply progress on a generalized version of the “log-rank conjecture” in communication complexity. We also observe that, in the case of computing relations (search problems), very large gaps do exist. We conclude with two results on the multiparty “fooling set technique”, another method for obtaining communication complexity lower bounds.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2010.01.018</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Communication complexity ; Complexity ; Computer simulation ; Gaps ; Log rank conjecture ; Lower bounds ; Mathematical analysis ; Mathematical models ; Multiparty communication complexity ; Partition arguments ; Partitions ; Players</subject><ispartof>Theoretical computer science, 2011-05, Vol.412 (24), p.2611-2622</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-238a7d6e61b1062f9884112f637946c5730a71a0331a569c05a5124931dad3ce3</citedby><cites>FETCH-LOGICAL-c372t-238a7d6e61b1062f9884112f637946c5730a71a0331a569c05a5124931dad3ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304397510000435$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Draisma, Jan</creatorcontrib><creatorcontrib>Kushilevitz, Eyal</creatorcontrib><creatorcontrib>Weinreb, Enav</creatorcontrib><title>Partition arguments in multiparty communication complexity</title><title>Theoretical computer science</title><description>Consider the “Number in Hand” multiparty communication complexity model, where k players holding inputs x 1 , … , x k ∈ { 0 , 1 } n communicate to compute the value f ( x 1 , … , x k ) of a function f known to all of them. The main lower bound technique for the communication complexity of such problems is that of partition arguments: partition the k players into two disjoint sets of players and find a lower bound for the induced two-party communication complexity problem. In this paper, we study the power of partition arguments. Our two main results are very different in nature: (i) For randomized communication complexity, we show that partition arguments may yield bounds that are exponentially far from the true communication complexity. Specifically, we prove that there exists a 3 -argument function f whose communication complexity is Ω ( n ) , while partition arguments can only yield an Ω ( log n ) lower bound. The same holds for nondeterministiccommunication complexity. (ii) For deterministic communication complexity, we prove that finding significant gaps between the true communication complexity and the best lower bound that can be obtained via partition arguments, would imply progress on a generalized version of the “log-rank conjecture” in communication complexity. We also observe that, in the case of computing relations (search problems), very large gaps do exist. We conclude with two results on the multiparty “fooling set technique”, another method for obtaining communication complexity lower bounds.</description><subject>Communication complexity</subject><subject>Complexity</subject><subject>Computer simulation</subject><subject>Gaps</subject><subject>Log rank conjecture</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multiparty communication complexity</subject><subject>Partition arguments</subject><subject>Partitions</subject><subject>Players</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKBDEQDKLguvoB3ubmadZ0MpOHnkR8wYIe9BxipkeyzMskI-7fm3U92xQ0RVcVdBFyDnQFFMTlZpVcXDGaOYUMdUAWoKQuGdPVIVlQTquSa1kfk5MYNzRPLcWCXL3YkHzy41DY8DH3OKRY-KHo5y75Kd-2hRv7fh68s7-qzKYOv33anpKj1nYRz_72krzd373ePpbr54en25t16bhkqWRcWdkIFPAOVLBWK1UBsFZwqSvhasmplWAp52BroR2tbQ2s0hwa23CHfEku9rlTGD9njMn0PjrsOjvgOEejlOY5smJZCXulC2OMAVszBd_bsDVAza4mszG5JrOryVDIUNlzvfdgfuHLYzDReRwcNj6gS6YZ_T_uHx6tb4Q</recordid><startdate>20110527</startdate><enddate>20110527</enddate><creator>Draisma, Jan</creator><creator>Kushilevitz, Eyal</creator><creator>Weinreb, Enav</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110527</creationdate><title>Partition arguments in multiparty communication complexity</title><author>Draisma, Jan ; Kushilevitz, Eyal ; Weinreb, Enav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-238a7d6e61b1062f9884112f637946c5730a71a0331a569c05a5124931dad3ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Communication complexity</topic><topic>Complexity</topic><topic>Computer simulation</topic><topic>Gaps</topic><topic>Log rank conjecture</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multiparty communication complexity</topic><topic>Partition arguments</topic><topic>Partitions</topic><topic>Players</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Draisma, Jan</creatorcontrib><creatorcontrib>Kushilevitz, Eyal</creatorcontrib><creatorcontrib>Weinreb, Enav</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Draisma, Jan</au><au>Kushilevitz, Eyal</au><au>Weinreb, Enav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partition arguments in multiparty communication complexity</atitle><jtitle>Theoretical computer science</jtitle><date>2011-05-27</date><risdate>2011</risdate><volume>412</volume><issue>24</issue><spage>2611</spage><epage>2622</epage><pages>2611-2622</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><abstract>Consider the “Number in Hand” multiparty communication complexity model, where k players holding inputs x 1 , … , x k ∈ { 0 , 1 } n communicate to compute the value f ( x 1 , … , x k ) of a function f known to all of them. The main lower bound technique for the communication complexity of such problems is that of partition arguments: partition the k players into two disjoint sets of players and find a lower bound for the induced two-party communication complexity problem. In this paper, we study the power of partition arguments. Our two main results are very different in nature: (i) For randomized communication complexity, we show that partition arguments may yield bounds that are exponentially far from the true communication complexity. Specifically, we prove that there exists a 3 -argument function f whose communication complexity is Ω ( n ) , while partition arguments can only yield an Ω ( log n ) lower bound. The same holds for nondeterministiccommunication complexity. (ii) For deterministic communication complexity, we prove that finding significant gaps between the true communication complexity and the best lower bound that can be obtained via partition arguments, would imply progress on a generalized version of the “log-rank conjecture” in communication complexity. We also observe that, in the case of computing relations (search problems), very large gaps do exist. We conclude with two results on the multiparty “fooling set technique”, another method for obtaining communication complexity lower bounds.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2010.01.018</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 2011-05, Vol.412 (24), p.2611-2622
issn 0304-3975
1879-2294
language eng
recordid cdi_proquest_miscellaneous_889384142
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Communication complexity
Complexity
Computer simulation
Gaps
Log rank conjecture
Lower bounds
Mathematical analysis
Mathematical models
Multiparty communication complexity
Partition arguments
Partitions
Players
title Partition arguments in multiparty communication complexity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A24%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partition%20arguments%20in%20multiparty%20communication%20complexity&rft.jtitle=Theoretical%20computer%20science&rft.au=Draisma,%20Jan&rft.date=2011-05-27&rft.volume=412&rft.issue=24&rft.spage=2611&rft.epage=2622&rft.pages=2611-2622&rft.issn=0304-3975&rft.eissn=1879-2294&rft_id=info:doi/10.1016/j.tcs.2010.01.018&rft_dat=%3Cproquest_cross%3E889384142%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889384142&rft_id=info:pmid/&rft_els_id=S0304397510000435&rfr_iscdi=true