Oxidation pathways in the reaction of diacetylene with OH radicals

We present a portion of the potential energy surface of the reaction of diacetylene with OH radicals, calculated using RQCISD(T) and two basis set extrapolation schemes. Based on this surface, we performed calculations of the rate coefficients using an RRKM/master-equation formalism. After a small (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Combustion Institute 2007, Vol.31 (1), p.185-192
Hauptverfasser: Senosiain, Juan P., Klippenstein, Stephen J., Miller, James A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 192
container_issue 1
container_start_page 185
container_title Proceedings of the Combustion Institute
container_volume 31
creator Senosiain, Juan P.
Klippenstein, Stephen J.
Miller, James A.
description We present a portion of the potential energy surface of the reaction of diacetylene with OH radicals, calculated using RQCISD(T) and two basis set extrapolation schemes. Based on this surface, we performed calculations of the rate coefficients using an RRKM/master-equation formalism. After a small (1 kcal/mol) adjustment to the energy barrier of the association reaction, our calculated rate coefficients of the high-pressure limit agree very well with previous direct measurements. However, our calculations at high temperatures are considerably smaller than the values inferred in previous studies. The non-Arrhenius behavior and significant pressure dependence of the rate coefficients above 800 K is due to the competition between stabilization, abstraction and addition–elimination channels. At low temperatures, the reaction proceeds mostly to the addition products, as well as to CO and propargyl. Above 1200 K, direct hydrogen abstraction and production of H atoms become important.
doi_str_mv 10.1016/j.proci.2006.08.084
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_889383849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1540748906003476</els_id><sourcerecordid>889383849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-78d3c1b82e281cfbd23de015436c466b0b9b66169a1ee68c59c539dab6242a493</originalsourceid><addsrcrecordid>eNp9UEFOwzAQtBBIlMILuIQTpwQ7Th37wAEqoEiVeoGz5ay3qqs0KbZL6e9xG85IK81KOzOaHUJuGS0YZeJhXWx9D64oKRUFlWmqMzJisuZ5WdPqPO2TiuZ1JdUluQphTSmvKZ-MyPPix1kTXd9lWxNXe3MImeuyuMLMo4HToV9m1hnAeGixw2zv4ipbzDJvrAPThmtysUyAN384Jp-vLx_TWT5fvL1Pn-Y5cMFiXkvLgTWyxFIyWDa25BZpysUFVEI0tFGNEEwowxCFhImCCVfWNKKsSlMpPiZ3g28fotMBXERYQd91CFGrminGE-d-4KQ-vnYYot64ANi2psN-F7SUiksuT258YILvQ_C41FvvNsYfNKP6WKpe61Op-liqpjJNlVSPgwrTo98O_TEHdoDW-WMM27t_9b8ZvIBp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889383849</pqid></control><display><type>article</type><title>Oxidation pathways in the reaction of diacetylene with OH radicals</title><source>Elsevier ScienceDirect Journals</source><creator>Senosiain, Juan P. ; Klippenstein, Stephen J. ; Miller, James A.</creator><creatorcontrib>Senosiain, Juan P. ; Klippenstein, Stephen J. ; Miller, James A. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>We present a portion of the potential energy surface of the reaction of diacetylene with OH radicals, calculated using RQCISD(T) and two basis set extrapolation schemes. Based on this surface, we performed calculations of the rate coefficients using an RRKM/master-equation formalism. After a small (1 kcal/mol) adjustment to the energy barrier of the association reaction, our calculated rate coefficients of the high-pressure limit agree very well with previous direct measurements. However, our calculations at high temperatures are considerably smaller than the values inferred in previous studies. The non-Arrhenius behavior and significant pressure dependence of the rate coefficients above 800 K is due to the competition between stabilization, abstraction and addition–elimination channels. At low temperatures, the reaction proceeds mostly to the addition products, as well as to CO and propargyl. Above 1200 K, direct hydrogen abstraction and production of H atoms become important.</description><identifier>ISSN: 1540-7489</identifier><identifier>EISSN: 1873-2704</identifier><identifier>DOI: 10.1016/j.proci.2006.08.084</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>08 HYDROGEN ; ATOMS ; Carbon monoxide ; Channels ; COMBUSTION ; Diacetylene ; EXTRAPOLATION ; Formalism ; HYDROGEN ; Hydroxyl ; Master equation ; Mathematical analysis ; OXIDATION ; POTENTIAL ENERGY ; PRESSURE DEPENDENCE ; PRODUCTION ; RADICALS ; Soot ; STABILIZATION</subject><ispartof>Proceedings of the Combustion Institute, 2007, Vol.31 (1), p.185-192</ispartof><rights>2006 The Combustion Institute</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-78d3c1b82e281cfbd23de015436c466b0b9b66169a1ee68c59c539dab6242a493</citedby><cites>FETCH-LOGICAL-c361t-78d3c1b82e281cfbd23de015436c466b0b9b66169a1ee68c59c539dab6242a493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1540748906003476$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,314,776,780,881,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/971913$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Senosiain, Juan P.</creatorcontrib><creatorcontrib>Klippenstein, Stephen J.</creatorcontrib><creatorcontrib>Miller, James A.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Oxidation pathways in the reaction of diacetylene with OH radicals</title><title>Proceedings of the Combustion Institute</title><description>We present a portion of the potential energy surface of the reaction of diacetylene with OH radicals, calculated using RQCISD(T) and two basis set extrapolation schemes. Based on this surface, we performed calculations of the rate coefficients using an RRKM/master-equation formalism. After a small (1 kcal/mol) adjustment to the energy barrier of the association reaction, our calculated rate coefficients of the high-pressure limit agree very well with previous direct measurements. However, our calculations at high temperatures are considerably smaller than the values inferred in previous studies. The non-Arrhenius behavior and significant pressure dependence of the rate coefficients above 800 K is due to the competition between stabilization, abstraction and addition–elimination channels. At low temperatures, the reaction proceeds mostly to the addition products, as well as to CO and propargyl. Above 1200 K, direct hydrogen abstraction and production of H atoms become important.</description><subject>08 HYDROGEN</subject><subject>ATOMS</subject><subject>Carbon monoxide</subject><subject>Channels</subject><subject>COMBUSTION</subject><subject>Diacetylene</subject><subject>EXTRAPOLATION</subject><subject>Formalism</subject><subject>HYDROGEN</subject><subject>Hydroxyl</subject><subject>Master equation</subject><subject>Mathematical analysis</subject><subject>OXIDATION</subject><subject>POTENTIAL ENERGY</subject><subject>PRESSURE DEPENDENCE</subject><subject>PRODUCTION</subject><subject>RADICALS</subject><subject>Soot</subject><subject>STABILIZATION</subject><issn>1540-7489</issn><issn>1873-2704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9UEFOwzAQtBBIlMILuIQTpwQ7Th37wAEqoEiVeoGz5ay3qqs0KbZL6e9xG85IK81KOzOaHUJuGS0YZeJhXWx9D64oKRUFlWmqMzJisuZ5WdPqPO2TiuZ1JdUluQphTSmvKZ-MyPPix1kTXd9lWxNXe3MImeuyuMLMo4HToV9m1hnAeGixw2zv4ipbzDJvrAPThmtysUyAN384Jp-vLx_TWT5fvL1Pn-Y5cMFiXkvLgTWyxFIyWDa25BZpysUFVEI0tFGNEEwowxCFhImCCVfWNKKsSlMpPiZ3g28fotMBXERYQd91CFGrminGE-d-4KQ-vnYYot64ANi2psN-F7SUiksuT258YILvQ_C41FvvNsYfNKP6WKpe61Op-liqpjJNlVSPgwrTo98O_TEHdoDW-WMM27t_9b8ZvIBp</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>Senosiain, Juan P.</creator><creator>Klippenstein, Stephen J.</creator><creator>Miller, James A.</creator><general>Elsevier Inc</general><general>Proc. Vol. 31, pp. 185-192</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>2007</creationdate><title>Oxidation pathways in the reaction of diacetylene with OH radicals</title><author>Senosiain, Juan P. ; Klippenstein, Stephen J. ; Miller, James A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-78d3c1b82e281cfbd23de015436c466b0b9b66169a1ee68c59c539dab6242a493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>08 HYDROGEN</topic><topic>ATOMS</topic><topic>Carbon monoxide</topic><topic>Channels</topic><topic>COMBUSTION</topic><topic>Diacetylene</topic><topic>EXTRAPOLATION</topic><topic>Formalism</topic><topic>HYDROGEN</topic><topic>Hydroxyl</topic><topic>Master equation</topic><topic>Mathematical analysis</topic><topic>OXIDATION</topic><topic>POTENTIAL ENERGY</topic><topic>PRESSURE DEPENDENCE</topic><topic>PRODUCTION</topic><topic>RADICALS</topic><topic>Soot</topic><topic>STABILIZATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Senosiain, Juan P.</creatorcontrib><creatorcontrib>Klippenstein, Stephen J.</creatorcontrib><creatorcontrib>Miller, James A.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Proceedings of the Combustion Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Senosiain, Juan P.</au><au>Klippenstein, Stephen J.</au><au>Miller, James A.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidation pathways in the reaction of diacetylene with OH radicals</atitle><jtitle>Proceedings of the Combustion Institute</jtitle><date>2007</date><risdate>2007</risdate><volume>31</volume><issue>1</issue><spage>185</spage><epage>192</epage><pages>185-192</pages><issn>1540-7489</issn><eissn>1873-2704</eissn><abstract>We present a portion of the potential energy surface of the reaction of diacetylene with OH radicals, calculated using RQCISD(T) and two basis set extrapolation schemes. Based on this surface, we performed calculations of the rate coefficients using an RRKM/master-equation formalism. After a small (1 kcal/mol) adjustment to the energy barrier of the association reaction, our calculated rate coefficients of the high-pressure limit agree very well with previous direct measurements. However, our calculations at high temperatures are considerably smaller than the values inferred in previous studies. The non-Arrhenius behavior and significant pressure dependence of the rate coefficients above 800 K is due to the competition between stabilization, abstraction and addition–elimination channels. At low temperatures, the reaction proceeds mostly to the addition products, as well as to CO and propargyl. Above 1200 K, direct hydrogen abstraction and production of H atoms become important.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1016/j.proci.2006.08.084</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1540-7489
ispartof Proceedings of the Combustion Institute, 2007, Vol.31 (1), p.185-192
issn 1540-7489
1873-2704
language eng
recordid cdi_proquest_miscellaneous_889383849
source Elsevier ScienceDirect Journals
subjects 08 HYDROGEN
ATOMS
Carbon monoxide
Channels
COMBUSTION
Diacetylene
EXTRAPOLATION
Formalism
HYDROGEN
Hydroxyl
Master equation
Mathematical analysis
OXIDATION
POTENTIAL ENERGY
PRESSURE DEPENDENCE
PRODUCTION
RADICALS
Soot
STABILIZATION
title Oxidation pathways in the reaction of diacetylene with OH radicals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A07%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidation%20pathways%20in%20the%20reaction%20of%20diacetylene%20with%20OH%20radicals&rft.jtitle=Proceedings%20of%20the%20Combustion%20Institute&rft.au=Senosiain,%20Juan%20P.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2007&rft.volume=31&rft.issue=1&rft.spage=185&rft.epage=192&rft.pages=185-192&rft.issn=1540-7489&rft.eissn=1873-2704&rft_id=info:doi/10.1016/j.proci.2006.08.084&rft_dat=%3Cproquest_osti_%3E889383849%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889383849&rft_id=info:pmid/&rft_els_id=S1540748906003476&rfr_iscdi=true