Efficient implementations of the Crank-Nicolson scheme for the finite-difference time-domain method

When a finite-difference time-domain (FDTD) method is constructed by applying the Crank-Nicolson (CN) scheme to discretize Maxwell's equations, a huge sparse irreducible matrix results, which cannot be solved efficiently. This paper proposes a factorization-splitting scheme using two substeps t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2006-05, Vol.54 (5), p.2275-2284
Hauptverfasser: Guilin Sun, Trueman, C.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2284
container_issue 5
container_start_page 2275
container_title IEEE transactions on microwave theory and techniques
container_volume 54
creator Guilin Sun
Trueman, C.W.
description When a finite-difference time-domain (FDTD) method is constructed by applying the Crank-Nicolson (CN) scheme to discretize Maxwell's equations, a huge sparse irreducible matrix results, which cannot be solved efficiently. This paper proposes a factorization-splitting scheme using two substeps to decompose the generalized CN matrix into two simple matrices with the terms not factored confined to one sub-step. Two unconditionally stable methods are developed: one has the same numerical dispersion relation as the alternating-direction implicit FDTD method, and the other has a much more isotropic numerical velocity. The limit on the time-step size to avoid numerical attenuation is investigated, and is shown to be below the Nyquist sampling rate. The intrinsic temporal numerical dispersion is discussed, which is the fundamental accuracy limit of the methods.
doi_str_mv 10.1109/TMTT.2006.873639
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_889383355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1629072</ieee_id><sourcerecordid>2341421741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-c3917d755a1083c0d3b3394a4a61e626b56152fec712791a9edbd1cd5f188923</originalsourceid><addsrcrecordid>eNp90U2LFDEQBuAgCo6rd8FLI6inHlP5zlGG1V1Y9dL3JpOuMFm7kzHpOfjvN-MsLHjwlBT1VEHyEvIW6BaA2s_D92HYMkrV1miuuH1GNiCl7q3S9DnZUAqmt8LQl-RVrfetFJKaDfHXIUQfMa1dXI4zLu3m1phT7XLo1gN2u-LSr_5H9HmuOXXVHxrqQi5_uyGmuGI_xRCwYPLYrXFpdV5cTN2C6yFPr8mL4OaKbx7PKzJ8vR52N_3dz2-3uy93vRfCrr3nFvSkpXRADfd04nvOrXDCKUDF1F4qkCyg18C0BWdx2k_gJxnAGMv4Ffl0WXss-fcJ6zousXqcZ5cwn-rYEDecS9nkx_9KZiiA5aLB9__A-3wqqT1iNEoKZkGcEb0gX3KtBcN4LHFx5c8IdDxnM56zGc_ZjJds2siHx72uejeH9sU-1qc5ra1kApp7d3EREZ_ailmqGX8AvHeXSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865429144</pqid></control><display><type>article</type><title>Efficient implementations of the Crank-Nicolson scheme for the finite-difference time-domain method</title><source>IEEE Electronic Library (IEL)</source><creator>Guilin Sun ; Trueman, C.W.</creator><creatorcontrib>Guilin Sun ; Trueman, C.W.</creatorcontrib><description>When a finite-difference time-domain (FDTD) method is constructed by applying the Crank-Nicolson (CN) scheme to discretize Maxwell's equations, a huge sparse irreducible matrix results, which cannot be solved efficiently. This paper proposes a factorization-splitting scheme using two substeps to decompose the generalized CN matrix into two simple matrices with the terms not factored confined to one sub-step. Two unconditionally stable methods are developed: one has the same numerical dispersion relation as the alternating-direction implicit FDTD method, and the other has a much more isotropic numerical velocity. The limit on the time-step size to avoid numerical attenuation is investigated, and is shown to be below the Nyquist sampling rate. The intrinsic temporal numerical dispersion is discussed, which is the fundamental accuracy limit of the methods.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2006.873639</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Anisotropic magnetoresistance ; Applied sciences ; Attenuation ; Computational electromagnetics ; Crank-Nicolson (CN) scheme ; Dispersions ; Electric, optical and optoelectronic circuits ; Electronics ; Exact sciences and technology ; Finite difference method ; Finite difference methods ; Finite difference time domain method ; finite-difference time-domain (FDTD) method ; Geometry ; Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics ; Mathematical analysis ; Mathematical models ; Matrix decomposition ; Maxwell's equations ; Microwave filters ; Microwaves ; numerical anisotropy ; numerical dispersion ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Sparse matrices ; Sun ; Theoretical study. Circuits analysis and design ; Time domain analysis ; Transmission line matrix methods ; unconditionally stable method</subject><ispartof>IEEE transactions on microwave theory and techniques, 2006-05, Vol.54 (5), p.2275-2284</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-c3917d755a1083c0d3b3394a4a61e626b56152fec712791a9edbd1cd5f188923</citedby><cites>FETCH-LOGICAL-c449t-c3917d755a1083c0d3b3394a4a61e626b56152fec712791a9edbd1cd5f188923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1629072$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1629072$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17795241$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Guilin Sun</creatorcontrib><creatorcontrib>Trueman, C.W.</creatorcontrib><title>Efficient implementations of the Crank-Nicolson scheme for the finite-difference time-domain method</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>When a finite-difference time-domain (FDTD) method is constructed by applying the Crank-Nicolson (CN) scheme to discretize Maxwell's equations, a huge sparse irreducible matrix results, which cannot be solved efficiently. This paper proposes a factorization-splitting scheme using two substeps to decompose the generalized CN matrix into two simple matrices with the terms not factored confined to one sub-step. Two unconditionally stable methods are developed: one has the same numerical dispersion relation as the alternating-direction implicit FDTD method, and the other has a much more isotropic numerical velocity. The limit on the time-step size to avoid numerical attenuation is investigated, and is shown to be below the Nyquist sampling rate. The intrinsic temporal numerical dispersion is discussed, which is the fundamental accuracy limit of the methods.</description><subject>Anisotropic magnetoresistance</subject><subject>Applied sciences</subject><subject>Attenuation</subject><subject>Computational electromagnetics</subject><subject>Crank-Nicolson (CN) scheme</subject><subject>Dispersions</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Finite difference method</subject><subject>Finite difference methods</subject><subject>Finite difference time domain method</subject><subject>finite-difference time-domain (FDTD) method</subject><subject>Geometry</subject><subject>Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Matrix decomposition</subject><subject>Maxwell's equations</subject><subject>Microwave filters</subject><subject>Microwaves</subject><subject>numerical anisotropy</subject><subject>numerical dispersion</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Sparse matrices</subject><subject>Sun</subject><subject>Theoretical study. Circuits analysis and design</subject><subject>Time domain analysis</subject><subject>Transmission line matrix methods</subject><subject>unconditionally stable method</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90U2LFDEQBuAgCo6rd8FLI6inHlP5zlGG1V1Y9dL3JpOuMFm7kzHpOfjvN-MsLHjwlBT1VEHyEvIW6BaA2s_D92HYMkrV1miuuH1GNiCl7q3S9DnZUAqmt8LQl-RVrfetFJKaDfHXIUQfMa1dXI4zLu3m1phT7XLo1gN2u-LSr_5H9HmuOXXVHxrqQi5_uyGmuGI_xRCwYPLYrXFpdV5cTN2C6yFPr8mL4OaKbx7PKzJ8vR52N_3dz2-3uy93vRfCrr3nFvSkpXRADfd04nvOrXDCKUDF1F4qkCyg18C0BWdx2k_gJxnAGMv4Ffl0WXss-fcJ6zousXqcZ5cwn-rYEDecS9nkx_9KZiiA5aLB9__A-3wqqT1iNEoKZkGcEb0gX3KtBcN4LHFx5c8IdDxnM56zGc_ZjJds2siHx72uejeH9sU-1qc5ra1kApp7d3EREZ_ailmqGX8AvHeXSg</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Guilin Sun</creator><creator>Trueman, C.W.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060501</creationdate><title>Efficient implementations of the Crank-Nicolson scheme for the finite-difference time-domain method</title><author>Guilin Sun ; Trueman, C.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-c3917d755a1083c0d3b3394a4a61e626b56152fec712791a9edbd1cd5f188923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Anisotropic magnetoresistance</topic><topic>Applied sciences</topic><topic>Attenuation</topic><topic>Computational electromagnetics</topic><topic>Crank-Nicolson (CN) scheme</topic><topic>Dispersions</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Finite difference method</topic><topic>Finite difference methods</topic><topic>Finite difference time domain method</topic><topic>finite-difference time-domain (FDTD) method</topic><topic>Geometry</topic><topic>Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Matrix decomposition</topic><topic>Maxwell's equations</topic><topic>Microwave filters</topic><topic>Microwaves</topic><topic>numerical anisotropy</topic><topic>numerical dispersion</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Sparse matrices</topic><topic>Sun</topic><topic>Theoretical study. Circuits analysis and design</topic><topic>Time domain analysis</topic><topic>Transmission line matrix methods</topic><topic>unconditionally stable method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guilin Sun</creatorcontrib><creatorcontrib>Trueman, C.W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guilin Sun</au><au>Trueman, C.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient implementations of the Crank-Nicolson scheme for the finite-difference time-domain method</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2006-05-01</date><risdate>2006</risdate><volume>54</volume><issue>5</issue><spage>2275</spage><epage>2284</epage><pages>2275-2284</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>When a finite-difference time-domain (FDTD) method is constructed by applying the Crank-Nicolson (CN) scheme to discretize Maxwell's equations, a huge sparse irreducible matrix results, which cannot be solved efficiently. This paper proposes a factorization-splitting scheme using two substeps to decompose the generalized CN matrix into two simple matrices with the terms not factored confined to one sub-step. Two unconditionally stable methods are developed: one has the same numerical dispersion relation as the alternating-direction implicit FDTD method, and the other has a much more isotropic numerical velocity. The limit on the time-step size to avoid numerical attenuation is investigated, and is shown to be below the Nyquist sampling rate. The intrinsic temporal numerical dispersion is discussed, which is the fundamental accuracy limit of the methods.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMTT.2006.873639</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 2006-05, Vol.54 (5), p.2275-2284
issn 0018-9480
1557-9670
language eng
recordid cdi_proquest_miscellaneous_889383355
source IEEE Electronic Library (IEL)
subjects Anisotropic magnetoresistance
Applied sciences
Attenuation
Computational electromagnetics
Crank-Nicolson (CN) scheme
Dispersions
Electric, optical and optoelectronic circuits
Electronics
Exact sciences and technology
Finite difference method
Finite difference methods
Finite difference time domain method
finite-difference time-domain (FDTD) method
Geometry
Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics
Mathematical analysis
Mathematical models
Matrix decomposition
Maxwell's equations
Microwave filters
Microwaves
numerical anisotropy
numerical dispersion
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Sparse matrices
Sun
Theoretical study. Circuits analysis and design
Time domain analysis
Transmission line matrix methods
unconditionally stable method
title Efficient implementations of the Crank-Nicolson scheme for the finite-difference time-domain method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A42%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20implementations%20of%20the%20Crank-Nicolson%20scheme%20for%20the%20finite-difference%20time-domain%20method&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Guilin%20Sun&rft.date=2006-05-01&rft.volume=54&rft.issue=5&rft.spage=2275&rft.epage=2284&rft.pages=2275-2284&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2006.873639&rft_dat=%3Cproquest_RIE%3E2341421741%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865429144&rft_id=info:pmid/&rft_ieee_id=1629072&rfr_iscdi=true