A relevance feedback method based on genetic programming for classification of remote sensing images
This paper presents an interactive technique for remote sensing image classification. In our proposal, users are able to interact with the classification system, indicating regions of interest (and those which are not). This feedback information is employed by a genetic programming approach to learn...
Gespeichert in:
Veröffentlicht in: | Information sciences 2011-07, Vol.181 (13), p.2671-2684 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2684 |
---|---|
container_issue | 13 |
container_start_page | 2671 |
container_title | Information sciences |
container_volume | 181 |
creator | dos Santos, J.A. Ferreira, C.D. Torres, R. da S. Gonçalves, M.A. Lamparelli, R.A.C. |
description | This paper presents an interactive technique for remote sensing image classification. In our proposal, users are able to interact with the classification system, indicating regions of interest (and those which are not). This feedback information is employed by a genetic programming approach to learning user preferences and combining image region descriptors that encode spectral and texture properties. Experiments demonstrate that the proposed method is effective for image classification tasks and outperforms the traditional MaxVer method. |
doi_str_mv | 10.1016/j.ins.2010.02.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889383334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025510000575</els_id><sourcerecordid>889383334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-fb04a693b273e255522ef00674d66b1021f50577f7a003ba49ff85bb0887d75a3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANx845SwtpM4Eaeq4k-qxAXOluOsg0sSFzutxNvjqpw5rVaa2Z35CLllkDNg1f02d1PMOaQdeA4gzsiC1ZJnFW_YOVkAcMiAl-UluYpxCwCFrKoF6VY04IAHPRmkFrFrtfmiI86fvqOtjthRP9EeJ5ydobvg-6DH0U09tT5QM-gYnXVGzy7JvE3HRj8jjTjFo8iNusd4TS6sHiLe_M0l-Xh6fF-_ZJu359f1apMZwZs5sy0UumpEy6XAFLXkHC1AJYuuqloGnNkSSimt1Klgq4vG2rpsW6hr2clSiyW5O91NOb_3GGc1umhwGPSEfh9VXTeiFkIUSclOShN8jAGt2oWUNfwoBuoIVG1VAqqOQBVwlf4lz8PJg6nCwWFQ0ThM3DoX0Myq8-4f9y_0SX5_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889383334</pqid></control><display><type>article</type><title>A relevance feedback method based on genetic programming for classification of remote sensing images</title><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>dos Santos, J.A. ; Ferreira, C.D. ; Torres, R. da S. ; Gonçalves, M.A. ; Lamparelli, R.A.C.</creator><creatorcontrib>dos Santos, J.A. ; Ferreira, C.D. ; Torres, R. da S. ; Gonçalves, M.A. ; Lamparelli, R.A.C.</creatorcontrib><description>This paper presents an interactive technique for remote sensing image classification. In our proposal, users are able to interact with the classification system, indicating regions of interest (and those which are not). This feedback information is employed by a genetic programming approach to learning user preferences and combining image region descriptors that encode spectral and texture properties. Experiments demonstrate that the proposed method is effective for image classification tasks and outperforms the traditional MaxVer method.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2010.02.003</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Classification ; Content-based image retrieval ; Genetic programming ; Genetics ; Image classification ; Programming ; Region descriptors ; Relevance feedback ; Remote sensing ; Remote sensing image classification ; Surface layer ; Texture</subject><ispartof>Information sciences, 2011-07, Vol.181 (13), p.2671-2684</ispartof><rights>2010 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-fb04a693b273e255522ef00674d66b1021f50577f7a003ba49ff85bb0887d75a3</citedby><cites>FETCH-LOGICAL-c329t-fb04a693b273e255522ef00674d66b1021f50577f7a003ba49ff85bb0887d75a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ins.2010.02.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>dos Santos, J.A.</creatorcontrib><creatorcontrib>Ferreira, C.D.</creatorcontrib><creatorcontrib>Torres, R. da S.</creatorcontrib><creatorcontrib>Gonçalves, M.A.</creatorcontrib><creatorcontrib>Lamparelli, R.A.C.</creatorcontrib><title>A relevance feedback method based on genetic programming for classification of remote sensing images</title><title>Information sciences</title><description>This paper presents an interactive technique for remote sensing image classification. In our proposal, users are able to interact with the classification system, indicating regions of interest (and those which are not). This feedback information is employed by a genetic programming approach to learning user preferences and combining image region descriptors that encode spectral and texture properties. Experiments demonstrate that the proposed method is effective for image classification tasks and outperforms the traditional MaxVer method.</description><subject>Classification</subject><subject>Content-based image retrieval</subject><subject>Genetic programming</subject><subject>Genetics</subject><subject>Image classification</subject><subject>Programming</subject><subject>Region descriptors</subject><subject>Relevance feedback</subject><subject>Remote sensing</subject><subject>Remote sensing image classification</subject><subject>Surface layer</subject><subject>Texture</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANx845SwtpM4Eaeq4k-qxAXOluOsg0sSFzutxNvjqpw5rVaa2Z35CLllkDNg1f02d1PMOaQdeA4gzsiC1ZJnFW_YOVkAcMiAl-UluYpxCwCFrKoF6VY04IAHPRmkFrFrtfmiI86fvqOtjthRP9EeJ5ydobvg-6DH0U09tT5QM-gYnXVGzy7JvE3HRj8jjTjFo8iNusd4TS6sHiLe_M0l-Xh6fF-_ZJu359f1apMZwZs5sy0UumpEy6XAFLXkHC1AJYuuqloGnNkSSimt1Klgq4vG2rpsW6hr2clSiyW5O91NOb_3GGc1umhwGPSEfh9VXTeiFkIUSclOShN8jAGt2oWUNfwoBuoIVG1VAqqOQBVwlf4lz8PJg6nCwWFQ0ThM3DoX0Myq8-4f9y_0SX5_</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>dos Santos, J.A.</creator><creator>Ferreira, C.D.</creator><creator>Torres, R. da S.</creator><creator>Gonçalves, M.A.</creator><creator>Lamparelli, R.A.C.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110701</creationdate><title>A relevance feedback method based on genetic programming for classification of remote sensing images</title><author>dos Santos, J.A. ; Ferreira, C.D. ; Torres, R. da S. ; Gonçalves, M.A. ; Lamparelli, R.A.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-fb04a693b273e255522ef00674d66b1021f50577f7a003ba49ff85bb0887d75a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Classification</topic><topic>Content-based image retrieval</topic><topic>Genetic programming</topic><topic>Genetics</topic><topic>Image classification</topic><topic>Programming</topic><topic>Region descriptors</topic><topic>Relevance feedback</topic><topic>Remote sensing</topic><topic>Remote sensing image classification</topic><topic>Surface layer</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>dos Santos, J.A.</creatorcontrib><creatorcontrib>Ferreira, C.D.</creatorcontrib><creatorcontrib>Torres, R. da S.</creatorcontrib><creatorcontrib>Gonçalves, M.A.</creatorcontrib><creatorcontrib>Lamparelli, R.A.C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>dos Santos, J.A.</au><au>Ferreira, C.D.</au><au>Torres, R. da S.</au><au>Gonçalves, M.A.</au><au>Lamparelli, R.A.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A relevance feedback method based on genetic programming for classification of remote sensing images</atitle><jtitle>Information sciences</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>181</volume><issue>13</issue><spage>2671</spage><epage>2684</epage><pages>2671-2684</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>This paper presents an interactive technique for remote sensing image classification. In our proposal, users are able to interact with the classification system, indicating regions of interest (and those which are not). This feedback information is employed by a genetic programming approach to learning user preferences and combining image region descriptors that encode spectral and texture properties. Experiments demonstrate that the proposed method is effective for image classification tasks and outperforms the traditional MaxVer method.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2010.02.003</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-0255 |
ispartof | Information sciences, 2011-07, Vol.181 (13), p.2671-2684 |
issn | 0020-0255 1872-6291 |
language | eng |
recordid | cdi_proquest_miscellaneous_889383334 |
source | ScienceDirect Freedom Collection (Elsevier) |
subjects | Classification Content-based image retrieval Genetic programming Genetics Image classification Programming Region descriptors Relevance feedback Remote sensing Remote sensing image classification Surface layer Texture |
title | A relevance feedback method based on genetic programming for classification of remote sensing images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A04%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20relevance%20feedback%20method%20based%20on%20genetic%20programming%20for%20classification%20of%20remote%20sensing%20images&rft.jtitle=Information%20sciences&rft.au=dos%20Santos,%20J.A.&rft.date=2011-07-01&rft.volume=181&rft.issue=13&rft.spage=2671&rft.epage=2684&rft.pages=2671-2684&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2010.02.003&rft_dat=%3Cproquest_cross%3E889383334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889383334&rft_id=info:pmid/&rft_els_id=S0020025510000575&rfr_iscdi=true |