A relevance feedback method based on genetic programming for classification of remote sensing images

This paper presents an interactive technique for remote sensing image classification. In our proposal, users are able to interact with the classification system, indicating regions of interest (and those which are not). This feedback information is employed by a genetic programming approach to learn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 2011-07, Vol.181 (13), p.2671-2684
Hauptverfasser: dos Santos, J.A., Ferreira, C.D., Torres, R. da S., Gonçalves, M.A., Lamparelli, R.A.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2684
container_issue 13
container_start_page 2671
container_title Information sciences
container_volume 181
creator dos Santos, J.A.
Ferreira, C.D.
Torres, R. da S.
Gonçalves, M.A.
Lamparelli, R.A.C.
description This paper presents an interactive technique for remote sensing image classification. In our proposal, users are able to interact with the classification system, indicating regions of interest (and those which are not). This feedback information is employed by a genetic programming approach to learning user preferences and combining image region descriptors that encode spectral and texture properties. Experiments demonstrate that the proposed method is effective for image classification tasks and outperforms the traditional MaxVer method.
doi_str_mv 10.1016/j.ins.2010.02.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889383334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025510000575</els_id><sourcerecordid>889383334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-fb04a693b273e255522ef00674d66b1021f50577f7a003ba49ff85bb0887d75a3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANx845SwtpM4Eaeq4k-qxAXOluOsg0sSFzutxNvjqpw5rVaa2Z35CLllkDNg1f02d1PMOaQdeA4gzsiC1ZJnFW_YOVkAcMiAl-UluYpxCwCFrKoF6VY04IAHPRmkFrFrtfmiI86fvqOtjthRP9EeJ5ydobvg-6DH0U09tT5QM-gYnXVGzy7JvE3HRj8jjTjFo8iNusd4TS6sHiLe_M0l-Xh6fF-_ZJu359f1apMZwZs5sy0UumpEy6XAFLXkHC1AJYuuqloGnNkSSimt1Klgq4vG2rpsW6hr2clSiyW5O91NOb_3GGc1umhwGPSEfh9VXTeiFkIUSclOShN8jAGt2oWUNfwoBuoIVG1VAqqOQBVwlf4lz8PJg6nCwWFQ0ThM3DoX0Myq8-4f9y_0SX5_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889383334</pqid></control><display><type>article</type><title>A relevance feedback method based on genetic programming for classification of remote sensing images</title><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>dos Santos, J.A. ; Ferreira, C.D. ; Torres, R. da S. ; Gonçalves, M.A. ; Lamparelli, R.A.C.</creator><creatorcontrib>dos Santos, J.A. ; Ferreira, C.D. ; Torres, R. da S. ; Gonçalves, M.A. ; Lamparelli, R.A.C.</creatorcontrib><description>This paper presents an interactive technique for remote sensing image classification. In our proposal, users are able to interact with the classification system, indicating regions of interest (and those which are not). This feedback information is employed by a genetic programming approach to learning user preferences and combining image region descriptors that encode spectral and texture properties. Experiments demonstrate that the proposed method is effective for image classification tasks and outperforms the traditional MaxVer method.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2010.02.003</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Classification ; Content-based image retrieval ; Genetic programming ; Genetics ; Image classification ; Programming ; Region descriptors ; Relevance feedback ; Remote sensing ; Remote sensing image classification ; Surface layer ; Texture</subject><ispartof>Information sciences, 2011-07, Vol.181 (13), p.2671-2684</ispartof><rights>2010 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-fb04a693b273e255522ef00674d66b1021f50577f7a003ba49ff85bb0887d75a3</citedby><cites>FETCH-LOGICAL-c329t-fb04a693b273e255522ef00674d66b1021f50577f7a003ba49ff85bb0887d75a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ins.2010.02.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>dos Santos, J.A.</creatorcontrib><creatorcontrib>Ferreira, C.D.</creatorcontrib><creatorcontrib>Torres, R. da S.</creatorcontrib><creatorcontrib>Gonçalves, M.A.</creatorcontrib><creatorcontrib>Lamparelli, R.A.C.</creatorcontrib><title>A relevance feedback method based on genetic programming for classification of remote sensing images</title><title>Information sciences</title><description>This paper presents an interactive technique for remote sensing image classification. In our proposal, users are able to interact with the classification system, indicating regions of interest (and those which are not). This feedback information is employed by a genetic programming approach to learning user preferences and combining image region descriptors that encode spectral and texture properties. Experiments demonstrate that the proposed method is effective for image classification tasks and outperforms the traditional MaxVer method.</description><subject>Classification</subject><subject>Content-based image retrieval</subject><subject>Genetic programming</subject><subject>Genetics</subject><subject>Image classification</subject><subject>Programming</subject><subject>Region descriptors</subject><subject>Relevance feedback</subject><subject>Remote sensing</subject><subject>Remote sensing image classification</subject><subject>Surface layer</subject><subject>Texture</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANx845SwtpM4Eaeq4k-qxAXOluOsg0sSFzutxNvjqpw5rVaa2Z35CLllkDNg1f02d1PMOaQdeA4gzsiC1ZJnFW_YOVkAcMiAl-UluYpxCwCFrKoF6VY04IAHPRmkFrFrtfmiI86fvqOtjthRP9EeJ5ydobvg-6DH0U09tT5QM-gYnXVGzy7JvE3HRj8jjTjFo8iNusd4TS6sHiLe_M0l-Xh6fF-_ZJu359f1apMZwZs5sy0UumpEy6XAFLXkHC1AJYuuqloGnNkSSimt1Klgq4vG2rpsW6hr2clSiyW5O91NOb_3GGc1umhwGPSEfh9VXTeiFkIUSclOShN8jAGt2oWUNfwoBuoIVG1VAqqOQBVwlf4lz8PJg6nCwWFQ0ThM3DoX0Myq8-4f9y_0SX5_</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>dos Santos, J.A.</creator><creator>Ferreira, C.D.</creator><creator>Torres, R. da S.</creator><creator>Gonçalves, M.A.</creator><creator>Lamparelli, R.A.C.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110701</creationdate><title>A relevance feedback method based on genetic programming for classification of remote sensing images</title><author>dos Santos, J.A. ; Ferreira, C.D. ; Torres, R. da S. ; Gonçalves, M.A. ; Lamparelli, R.A.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-fb04a693b273e255522ef00674d66b1021f50577f7a003ba49ff85bb0887d75a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Classification</topic><topic>Content-based image retrieval</topic><topic>Genetic programming</topic><topic>Genetics</topic><topic>Image classification</topic><topic>Programming</topic><topic>Region descriptors</topic><topic>Relevance feedback</topic><topic>Remote sensing</topic><topic>Remote sensing image classification</topic><topic>Surface layer</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>dos Santos, J.A.</creatorcontrib><creatorcontrib>Ferreira, C.D.</creatorcontrib><creatorcontrib>Torres, R. da S.</creatorcontrib><creatorcontrib>Gonçalves, M.A.</creatorcontrib><creatorcontrib>Lamparelli, R.A.C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>dos Santos, J.A.</au><au>Ferreira, C.D.</au><au>Torres, R. da S.</au><au>Gonçalves, M.A.</au><au>Lamparelli, R.A.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A relevance feedback method based on genetic programming for classification of remote sensing images</atitle><jtitle>Information sciences</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>181</volume><issue>13</issue><spage>2671</spage><epage>2684</epage><pages>2671-2684</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>This paper presents an interactive technique for remote sensing image classification. In our proposal, users are able to interact with the classification system, indicating regions of interest (and those which are not). This feedback information is employed by a genetic programming approach to learning user preferences and combining image region descriptors that encode spectral and texture properties. Experiments demonstrate that the proposed method is effective for image classification tasks and outperforms the traditional MaxVer method.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2010.02.003</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0255
ispartof Information sciences, 2011-07, Vol.181 (13), p.2671-2684
issn 0020-0255
1872-6291
language eng
recordid cdi_proquest_miscellaneous_889383334
source ScienceDirect Freedom Collection (Elsevier)
subjects Classification
Content-based image retrieval
Genetic programming
Genetics
Image classification
Programming
Region descriptors
Relevance feedback
Remote sensing
Remote sensing image classification
Surface layer
Texture
title A relevance feedback method based on genetic programming for classification of remote sensing images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A04%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20relevance%20feedback%20method%20based%20on%20genetic%20programming%20for%20classification%20of%20remote%20sensing%20images&rft.jtitle=Information%20sciences&rft.au=dos%20Santos,%20J.A.&rft.date=2011-07-01&rft.volume=181&rft.issue=13&rft.spage=2671&rft.epage=2684&rft.pages=2671-2684&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2010.02.003&rft_dat=%3Cproquest_cross%3E889383334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889383334&rft_id=info:pmid/&rft_els_id=S0020025510000575&rfr_iscdi=true