CadiaPlayer: A Simulation-Based General Game Player

The aim of general game playing (GGP) is to create intelligent agents that can automatically learn how to play many different games at an expert level without any human intervention. The traditional design model for GGP agents has been to use a minimax-based game-tree search augmented with an automa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computational intelligence and AI in games. 2009-03, Vol.1 (1), p.4-15
Hauptverfasser: Bjornsson, Y., Finnsson, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 1
container_start_page 4
container_title IEEE transactions on computational intelligence and AI in games.
container_volume 1
creator Bjornsson, Y.
Finnsson, H.
description The aim of general game playing (GGP) is to create intelligent agents that can automatically learn how to play many different games at an expert level without any human intervention. The traditional design model for GGP agents has been to use a minimax-based game-tree search augmented with an automatically learned heuristic evaluation function. The first successful GGP agents all followed that approach. In this paper, we describ e CadiaPlayer, a GGP agent employing a radically different approach: instead of a traditional game-tree search, it uses Monte Carlo simulations for its move decisions. Furthermore, we empirically evaluate different simulation-based approaches on a wide variety of games, introduce a domain-independent enhancement for automatically learning search-control knowledge to guide the simulation playouts, and show how to adapt the simulation searches to be more effective in single-agent games. CadiaPlayer has already proven its effectiveness by winning the 2007 and 2008 Association for the Advancement of Artificial Intelligence (AAAI) GGP competitions.
doi_str_mv 10.1109/TCIAIG.2009.2018702
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_889382010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4804731</ieee_id><sourcerecordid>889382010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-ee58a2b83fc5d02b458f52a49a869c8963db7899a50f2eff1a2f07b556ce4a483</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsNT-gl6CF0-puzv52PVWg8ZCQcEK3pZJMgsp-ai7zaH_3pQUD-5hdg7PO8w8jC0FXwnB9eMu26w3-UpyrsciVMrlFZsJHUHIE62u_3r1fcsW3u_5-AAgkcmMQYZVjR8Nnsg9Bevgs26HBo9134XP6KkKcurIYRPk2FIwcXfsxmLjaXH55-zr9WWXvYXb93yTrbdhCSkcQ6JYoSwU2DKuuCyiWNlYYqRRJbpUOoGqSJXWGHMryVqB0vK0iOOkpAgjBXP2MM09uP5nIH80be1LahrsqB-8UUqDGi_mI3n_j9z3g-vG5YyKUwAhQI8QTFDpeu8dWXNwdYvuZAQ3Z5NmMmnOJs3F5JhaTqmaiP4SkeJRCgJ-AREAbPo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857331139</pqid></control><display><type>article</type><title>CadiaPlayer: A Simulation-Based General Game Player</title><source>IEEE/IET Electronic Library</source><creator>Bjornsson, Y. ; Finnsson, H.</creator><creatorcontrib>Bjornsson, Y. ; Finnsson, H.</creatorcontrib><description>The aim of general game playing (GGP) is to create intelligent agents that can automatically learn how to play many different games at an expert level without any human intervention. The traditional design model for GGP agents has been to use a minimax-based game-tree search augmented with an automatically learned heuristic evaluation function. The first successful GGP agents all followed that approach. In this paper, we describ e CadiaPlayer, a GGP agent employing a radically different approach: instead of a traditional game-tree search, it uses Monte Carlo simulations for its move decisions. Furthermore, we empirically evaluate different simulation-based approaches on a wide variety of games, introduce a domain-independent enhancement for automatically learning search-control knowledge to guide the simulation playouts, and show how to adapt the simulation searches to be more effective in single-agent games. CadiaPlayer has already proven its effectiveness by winning the 2007 and 2008 Association for the Advancement of Artificial Intelligence (AAAI) GGP competitions.</description><identifier>ISSN: 1943-068X</identifier><identifier>ISSN: 2475-1502</identifier><identifier>EISSN: 1943-0698</identifier><identifier>EISSN: 2475-1510</identifier><identifier>DOI: 10.1109/TCIAIG.2009.2018702</identifier><identifier>CODEN: TCIARR</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Agents (artificial intelligence) ; Artificial intelligence ; Artificial intelligence (AI) ; Competitive intelligence ; Computational intelligence ; Computational modeling ; Computer simulation ; Decisions ; Games ; Humans ; Intelligent agent ; Learning ; Mathematical models ; Monte Carlo methods ; Read only memory ; Search methods ; Searching ; Simulation ; Studies ; Testing</subject><ispartof>IEEE transactions on computational intelligence and AI in games., 2009-03, Vol.1 (1), p.4-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-ee58a2b83fc5d02b458f52a49a869c8963db7899a50f2eff1a2f07b556ce4a483</citedby><cites>FETCH-LOGICAL-c373t-ee58a2b83fc5d02b458f52a49a869c8963db7899a50f2eff1a2f07b556ce4a483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4804731$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4804731$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bjornsson, Y.</creatorcontrib><creatorcontrib>Finnsson, H.</creatorcontrib><title>CadiaPlayer: A Simulation-Based General Game Player</title><title>IEEE transactions on computational intelligence and AI in games.</title><addtitle>TCIAIG</addtitle><description>The aim of general game playing (GGP) is to create intelligent agents that can automatically learn how to play many different games at an expert level without any human intervention. The traditional design model for GGP agents has been to use a minimax-based game-tree search augmented with an automatically learned heuristic evaluation function. The first successful GGP agents all followed that approach. In this paper, we describ e CadiaPlayer, a GGP agent employing a radically different approach: instead of a traditional game-tree search, it uses Monte Carlo simulations for its move decisions. Furthermore, we empirically evaluate different simulation-based approaches on a wide variety of games, introduce a domain-independent enhancement for automatically learning search-control knowledge to guide the simulation playouts, and show how to adapt the simulation searches to be more effective in single-agent games. CadiaPlayer has already proven its effectiveness by winning the 2007 and 2008 Association for the Advancement of Artificial Intelligence (AAAI) GGP competitions.</description><subject>Agents (artificial intelligence)</subject><subject>Artificial intelligence</subject><subject>Artificial intelligence (AI)</subject><subject>Competitive intelligence</subject><subject>Computational intelligence</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Decisions</subject><subject>Games</subject><subject>Humans</subject><subject>Intelligent agent</subject><subject>Learning</subject><subject>Mathematical models</subject><subject>Monte Carlo methods</subject><subject>Read only memory</subject><subject>Search methods</subject><subject>Searching</subject><subject>Simulation</subject><subject>Studies</subject><subject>Testing</subject><issn>1943-068X</issn><issn>2475-1502</issn><issn>1943-0698</issn><issn>2475-1510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsNT-gl6CF0-puzv52PVWg8ZCQcEK3pZJMgsp-ai7zaH_3pQUD-5hdg7PO8w8jC0FXwnB9eMu26w3-UpyrsciVMrlFZsJHUHIE62u_3r1fcsW3u_5-AAgkcmMQYZVjR8Nnsg9Bevgs26HBo9134XP6KkKcurIYRPk2FIwcXfsxmLjaXH55-zr9WWXvYXb93yTrbdhCSkcQ6JYoSwU2DKuuCyiWNlYYqRRJbpUOoGqSJXWGHMryVqB0vK0iOOkpAgjBXP2MM09uP5nIH80be1LahrsqB-8UUqDGi_mI3n_j9z3g-vG5YyKUwAhQI8QTFDpeu8dWXNwdYvuZAQ3Z5NmMmnOJs3F5JhaTqmaiP4SkeJRCgJ-AREAbPo</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Bjornsson, Y.</creator><creator>Finnsson, H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090301</creationdate><title>CadiaPlayer: A Simulation-Based General Game Player</title><author>Bjornsson, Y. ; Finnsson, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-ee58a2b83fc5d02b458f52a49a869c8963db7899a50f2eff1a2f07b556ce4a483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Agents (artificial intelligence)</topic><topic>Artificial intelligence</topic><topic>Artificial intelligence (AI)</topic><topic>Competitive intelligence</topic><topic>Computational intelligence</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Decisions</topic><topic>Games</topic><topic>Humans</topic><topic>Intelligent agent</topic><topic>Learning</topic><topic>Mathematical models</topic><topic>Monte Carlo methods</topic><topic>Read only memory</topic><topic>Search methods</topic><topic>Searching</topic><topic>Simulation</topic><topic>Studies</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bjornsson, Y.</creatorcontrib><creatorcontrib>Finnsson, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computational intelligence and AI in games.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bjornsson, Y.</au><au>Finnsson, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CadiaPlayer: A Simulation-Based General Game Player</atitle><jtitle>IEEE transactions on computational intelligence and AI in games.</jtitle><stitle>TCIAIG</stitle><date>2009-03-01</date><risdate>2009</risdate><volume>1</volume><issue>1</issue><spage>4</spage><epage>15</epage><pages>4-15</pages><issn>1943-068X</issn><issn>2475-1502</issn><eissn>1943-0698</eissn><eissn>2475-1510</eissn><coden>TCIARR</coden><abstract>The aim of general game playing (GGP) is to create intelligent agents that can automatically learn how to play many different games at an expert level without any human intervention. The traditional design model for GGP agents has been to use a minimax-based game-tree search augmented with an automatically learned heuristic evaluation function. The first successful GGP agents all followed that approach. In this paper, we describ e CadiaPlayer, a GGP agent employing a radically different approach: instead of a traditional game-tree search, it uses Monte Carlo simulations for its move decisions. Furthermore, we empirically evaluate different simulation-based approaches on a wide variety of games, introduce a domain-independent enhancement for automatically learning search-control knowledge to guide the simulation playouts, and show how to adapt the simulation searches to be more effective in single-agent games. CadiaPlayer has already proven its effectiveness by winning the 2007 and 2008 Association for the Advancement of Artificial Intelligence (AAAI) GGP competitions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCIAIG.2009.2018702</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1943-068X
ispartof IEEE transactions on computational intelligence and AI in games., 2009-03, Vol.1 (1), p.4-15
issn 1943-068X
2475-1502
1943-0698
2475-1510
language eng
recordid cdi_proquest_miscellaneous_889382010
source IEEE/IET Electronic Library
subjects Agents (artificial intelligence)
Artificial intelligence
Artificial intelligence (AI)
Competitive intelligence
Computational intelligence
Computational modeling
Computer simulation
Decisions
Games
Humans
Intelligent agent
Learning
Mathematical models
Monte Carlo methods
Read only memory
Search methods
Searching
Simulation
Studies
Testing
title CadiaPlayer: A Simulation-Based General Game Player
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T07%3A35%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CadiaPlayer:%20A%20Simulation-Based%20General%20Game%20Player&rft.jtitle=IEEE%20transactions%20on%20computational%20intelligence%20and%20AI%20in%20games.&rft.au=Bjornsson,%20Y.&rft.date=2009-03-01&rft.volume=1&rft.issue=1&rft.spage=4&rft.epage=15&rft.pages=4-15&rft.issn=1943-068X&rft.eissn=1943-0698&rft.coden=TCIARR&rft_id=info:doi/10.1109/TCIAIG.2009.2018702&rft_dat=%3Cproquest_RIE%3E889382010%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857331139&rft_id=info:pmid/&rft_ieee_id=4804731&rfr_iscdi=true