Fabrication of Reinforced and Biaxially Textured NiW Alloy Substrates by Spark Plasma Sintering Technique
The key requirement for the substrates employed in coated conductors is using highly cube textured and weakly magnetic as well as strengthened materials. In this work, a tri-layer of composite substrate, as a substitute for the traditional substrate architecture, was designed and obtained by sinteri...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2007-06, Vol.17 (2), p.3424-3427 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3427 |
---|---|
container_issue | 2 |
container_start_page | 3424 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 17 |
creator | Zhao, Yue Suo, HongLi Liu, Min He, Dong Zhang, YingXiao Fan, Ruifen Ma, Lin Zhou, MeiLing |
description | The key requirement for the substrates employed in coated conductors is using highly cube textured and weakly magnetic as well as strengthened materials. In this work, a tri-layer of composite substrate, as a substitute for the traditional substrate architecture, was designed and obtained by sintering two pieces of Ni-5at.% W (or Ni-7at.% W) outer layers on both sides of a Ni-12at.% W mixed powder (as an inner layer) together using an advanced spark plasma sintering (SPS) technology, followed by cold rolling and annealing. The sharp cube texture was obtained in both kinds of composite substrates by optimizing rolling and recrystallization processes. The percentage of the cube texture component on the Ni5W outer layer of the Ni5W/Nil2W/Ni5W composite substrate was higher than 95.4% within a misorientation angle of 10deg from EBSD measurements. Moreover, the yield strength of this composite substrate exceeds 300 MPa, while the saturation magnetization is reduced dramatically. |
doi_str_mv | 10.1109/TASC.2007.899706 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_889377029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4278344</ieee_id><sourcerecordid>2544770701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-ad852fb3755e60a8c87999080dd5597642cdad923fc0f5780e04ac8faf9304843</originalsourceid><addsrcrecordid>eNpdkMFrHCEUh4fQQtK090AuUig5zfap46rH7dK0gdCE7pYe5a2jranrbHUGsv99XDY00NPz6fd76tc0FxRmlIL-uF6sljMGIGdKawnzk-aMCqFaJqh4VdcgaKsY46fNm1IeAGinOnHWhGvc5GBxDEMigyffXUh-yNb1BFNPPgV8DBjjnqzd4zjluv0t_CSLGIc9WU2bMmYcXSGb2u0w_yH3EcsWySqk0eWQftWc_Z3C38m9bV57jMW9e67nzY_rz-vl1_b27svNcnHbWi7Y2GKvBPMbLoVwc0BlldRag4K-F0LLecdsj71m3FvwQipw0KFVHr3mUP_Ez5ur49xdHuq1ZTTbUKyLEZMbpmKU0lxKYLqS7_8jH4Ypp_o4o2lVRZlWFYIjZPNQSnbe7HLYYt4bCuZg3hzMm4N5czRfIx-e52KxGH3GZEN5yWmgEjqo3OWRC865f8cdk4p3HX8CgkiL3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912231298</pqid></control><display><type>article</type><title>Fabrication of Reinforced and Biaxially Textured NiW Alloy Substrates by Spark Plasma Sintering Technique</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Yue ; Suo, HongLi ; Liu, Min ; He, Dong ; Zhang, YingXiao ; Fan, Ruifen ; Ma, Lin ; Zhou, MeiLing</creator><creatorcontrib>Zhao, Yue ; Suo, HongLi ; Liu, Min ; He, Dong ; Zhang, YingXiao ; Fan, Ruifen ; Ma, Lin ; Zhou, MeiLing</creatorcontrib><description>The key requirement for the substrates employed in coated conductors is using highly cube textured and weakly magnetic as well as strengthened materials. In this work, a tri-layer of composite substrate, as a substitute for the traditional substrate architecture, was designed and obtained by sintering two pieces of Ni-5at.% W (or Ni-7at.% W) outer layers on both sides of a Ni-12at.% W mixed powder (as an inner layer) together using an advanced spark plasma sintering (SPS) technology, followed by cold rolling and annealing. The sharp cube texture was obtained in both kinds of composite substrates by optimizing rolling and recrystallization processes. The percentage of the cube texture component on the Ni5W outer layer of the Ni5W/Nil2W/Ni5W composite substrate was higher than 95.4% within a misorientation angle of 10deg from EBSD measurements. Moreover, the yield strength of this composite substrate exceeds 300 MPa, while the saturation magnetization is reduced dramatically.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2007.899706</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Circuit properties ; Circuits of signal characteristics conditioning (including delay circuits) ; Cold rolling ; Composite substrates ; Conducting materials ; Cube texture ; Electric connection. Cables. Wiring ; Electric, optical and optoelectronic circuits ; Electrical engineering. Electrical power engineering ; Electron back scatter diffraction ; Electronic circuits ; Electronics ; Exact sciences and technology ; Fabrication ; Inorganic materials ; Magnetic materials ; Materials ; mechanically reinforced substrate ; Nickel ; Plasma measurements ; Plasma temperature ; Powders ; reduced ferromagnetism ; Saturation (magnetic) ; Saturation magnetization ; Spark plasma sintering ; spark plasma sintering (SPS) ; Sparks ; Superconductivity ; Various equipment and components ; Yield strength</subject><ispartof>IEEE transactions on applied superconductivity, 2007-06, Vol.17 (2), p.3424-3427</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-ad852fb3755e60a8c87999080dd5597642cdad923fc0f5780e04ac8faf9304843</citedby><cites>FETCH-LOGICAL-c352t-ad852fb3755e60a8c87999080dd5597642cdad923fc0f5780e04ac8faf9304843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4278344$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4278344$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19017040$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Yue</creatorcontrib><creatorcontrib>Suo, HongLi</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>He, Dong</creatorcontrib><creatorcontrib>Zhang, YingXiao</creatorcontrib><creatorcontrib>Fan, Ruifen</creatorcontrib><creatorcontrib>Ma, Lin</creatorcontrib><creatorcontrib>Zhou, MeiLing</creatorcontrib><title>Fabrication of Reinforced and Biaxially Textured NiW Alloy Substrates by Spark Plasma Sintering Technique</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The key requirement for the substrates employed in coated conductors is using highly cube textured and weakly magnetic as well as strengthened materials. In this work, a tri-layer of composite substrate, as a substitute for the traditional substrate architecture, was designed and obtained by sintering two pieces of Ni-5at.% W (or Ni-7at.% W) outer layers on both sides of a Ni-12at.% W mixed powder (as an inner layer) together using an advanced spark plasma sintering (SPS) technology, followed by cold rolling and annealing. The sharp cube texture was obtained in both kinds of composite substrates by optimizing rolling and recrystallization processes. The percentage of the cube texture component on the Ni5W outer layer of the Ni5W/Nil2W/Ni5W composite substrate was higher than 95.4% within a misorientation angle of 10deg from EBSD measurements. Moreover, the yield strength of this composite substrate exceeds 300 MPa, while the saturation magnetization is reduced dramatically.</description><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Circuits of signal characteristics conditioning (including delay circuits)</subject><subject>Cold rolling</subject><subject>Composite substrates</subject><subject>Conducting materials</subject><subject>Cube texture</subject><subject>Electric connection. Cables. Wiring</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electron back scatter diffraction</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fabrication</subject><subject>Inorganic materials</subject><subject>Magnetic materials</subject><subject>Materials</subject><subject>mechanically reinforced substrate</subject><subject>Nickel</subject><subject>Plasma measurements</subject><subject>Plasma temperature</subject><subject>Powders</subject><subject>reduced ferromagnetism</subject><subject>Saturation (magnetic)</subject><subject>Saturation magnetization</subject><subject>Spark plasma sintering</subject><subject>spark plasma sintering (SPS)</subject><subject>Sparks</subject><subject>Superconductivity</subject><subject>Various equipment and components</subject><subject>Yield strength</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMFrHCEUh4fQQtK090AuUig5zfap46rH7dK0gdCE7pYe5a2jranrbHUGsv99XDY00NPz6fd76tc0FxRmlIL-uF6sljMGIGdKawnzk-aMCqFaJqh4VdcgaKsY46fNm1IeAGinOnHWhGvc5GBxDEMigyffXUh-yNb1BFNPPgV8DBjjnqzd4zjluv0t_CSLGIc9WU2bMmYcXSGb2u0w_yH3EcsWySqk0eWQftWc_Z3C38m9bV57jMW9e67nzY_rz-vl1_b27svNcnHbWi7Y2GKvBPMbLoVwc0BlldRag4K-F0LLecdsj71m3FvwQipw0KFVHr3mUP_Ez5ur49xdHuq1ZTTbUKyLEZMbpmKU0lxKYLqS7_8jH4Ypp_o4o2lVRZlWFYIjZPNQSnbe7HLYYt4bCuZg3hzMm4N5czRfIx-e52KxGH3GZEN5yWmgEjqo3OWRC865f8cdk4p3HX8CgkiL3w</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Zhao, Yue</creator><creator>Suo, HongLi</creator><creator>Liu, Min</creator><creator>He, Dong</creator><creator>Zhang, YingXiao</creator><creator>Fan, Ruifen</creator><creator>Ma, Lin</creator><creator>Zhou, MeiLing</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070601</creationdate><title>Fabrication of Reinforced and Biaxially Textured NiW Alloy Substrates by Spark Plasma Sintering Technique</title><author>Zhao, Yue ; Suo, HongLi ; Liu, Min ; He, Dong ; Zhang, YingXiao ; Fan, Ruifen ; Ma, Lin ; Zhou, MeiLing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-ad852fb3755e60a8c87999080dd5597642cdad923fc0f5780e04ac8faf9304843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Circuits of signal characteristics conditioning (including delay circuits)</topic><topic>Cold rolling</topic><topic>Composite substrates</topic><topic>Conducting materials</topic><topic>Cube texture</topic><topic>Electric connection. Cables. Wiring</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electron back scatter diffraction</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fabrication</topic><topic>Inorganic materials</topic><topic>Magnetic materials</topic><topic>Materials</topic><topic>mechanically reinforced substrate</topic><topic>Nickel</topic><topic>Plasma measurements</topic><topic>Plasma temperature</topic><topic>Powders</topic><topic>reduced ferromagnetism</topic><topic>Saturation (magnetic)</topic><topic>Saturation magnetization</topic><topic>Spark plasma sintering</topic><topic>spark plasma sintering (SPS)</topic><topic>Sparks</topic><topic>Superconductivity</topic><topic>Various equipment and components</topic><topic>Yield strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yue</creatorcontrib><creatorcontrib>Suo, HongLi</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>He, Dong</creatorcontrib><creatorcontrib>Zhang, YingXiao</creatorcontrib><creatorcontrib>Fan, Ruifen</creatorcontrib><creatorcontrib>Ma, Lin</creatorcontrib><creatorcontrib>Zhou, MeiLing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Yue</au><au>Suo, HongLi</au><au>Liu, Min</au><au>He, Dong</au><au>Zhang, YingXiao</au><au>Fan, Ruifen</au><au>Ma, Lin</au><au>Zhou, MeiLing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of Reinforced and Biaxially Textured NiW Alloy Substrates by Spark Plasma Sintering Technique</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2007-06-01</date><risdate>2007</risdate><volume>17</volume><issue>2</issue><spage>3424</spage><epage>3427</epage><pages>3424-3427</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The key requirement for the substrates employed in coated conductors is using highly cube textured and weakly magnetic as well as strengthened materials. In this work, a tri-layer of composite substrate, as a substitute for the traditional substrate architecture, was designed and obtained by sintering two pieces of Ni-5at.% W (or Ni-7at.% W) outer layers on both sides of a Ni-12at.% W mixed powder (as an inner layer) together using an advanced spark plasma sintering (SPS) technology, followed by cold rolling and annealing. The sharp cube texture was obtained in both kinds of composite substrates by optimizing rolling and recrystallization processes. The percentage of the cube texture component on the Ni5W outer layer of the Ni5W/Nil2W/Ni5W composite substrate was higher than 95.4% within a misorientation angle of 10deg from EBSD measurements. Moreover, the yield strength of this composite substrate exceeds 300 MPa, while the saturation magnetization is reduced dramatically.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2007.899706</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2007-06, Vol.17 (2), p.3424-3427 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_proquest_miscellaneous_889377029 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Circuit properties Circuits of signal characteristics conditioning (including delay circuits) Cold rolling Composite substrates Conducting materials Cube texture Electric connection. Cables. Wiring Electric, optical and optoelectronic circuits Electrical engineering. Electrical power engineering Electron back scatter diffraction Electronic circuits Electronics Exact sciences and technology Fabrication Inorganic materials Magnetic materials Materials mechanically reinforced substrate Nickel Plasma measurements Plasma temperature Powders reduced ferromagnetism Saturation (magnetic) Saturation magnetization Spark plasma sintering spark plasma sintering (SPS) Sparks Superconductivity Various equipment and components Yield strength |
title | Fabrication of Reinforced and Biaxially Textured NiW Alloy Substrates by Spark Plasma Sintering Technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A58%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20Reinforced%20and%20Biaxially%20Textured%20NiW%20Alloy%20Substrates%20by%20Spark%20Plasma%20Sintering%20Technique&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Zhao,%20Yue&rft.date=2007-06-01&rft.volume=17&rft.issue=2&rft.spage=3424&rft.epage=3427&rft.pages=3424-3427&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2007.899706&rft_dat=%3Cproquest_RIE%3E2544770701%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912231298&rft_id=info:pmid/&rft_ieee_id=4278344&rfr_iscdi=true |