Local Site Selectivity and Conformational Structures in the Glycosidic Bond Scission of Cellobiose

Car–Parrinello molecular dynamics combined with metadynamics simulations were used to study the acid-catalyzed hydrolysis of cellobiose (CB) in aqueous solution. The hydrolysis was studied in two steps. Step 1 involves the proton transfer from solvent to CB and dissociation of the glycosidic bond to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2011-09, Vol.115 (36), p.10682-10691
Hauptverfasser: Liang, Xiao, Montoya, Alejandro, Haynes, Brian S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10691
container_issue 36
container_start_page 10682
container_title The journal of physical chemistry. B
container_volume 115
creator Liang, Xiao
Montoya, Alejandro
Haynes, Brian S.
description Car–Parrinello molecular dynamics combined with metadynamics simulations were used to study the acid-catalyzed hydrolysis of cellobiose (CB) in aqueous solution. The hydrolysis was studied in two steps. Step 1 involves the proton transfer from solvent to CB and dissociation of the glycosidic bond to β-glucose and oxacarbenium ion species. Step 2 involves the formation of α-glucose from oxacarbenium and regeneration of the acid proton species. Step 1 is endothermic, while Step 2 is exothermic. The overall activation free energy of CB hydrolysis is 32.5 kcal mol–1, and the overall reaction free energy is −5.9 kcal mol–l, consistent with available experimental data. We observe that a stepwise mechanism generally described in the literature for Step 1 is not significantly favored relative to a concerted β-1,4′ linkage dissociation process.
doi_str_mv 10.1021/jp204199h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_888340861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753517063</sourcerecordid><originalsourceid>FETCH-LOGICAL-a413t-bfeecb8cb15513dfaf9d3d63dc629b65a3403e62758ec293b198d4e46b6e9bdc3</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgipfqwheQbERdVHOZSTNLLVqFgovqesjlDE2ZTmqSEfr2prR2JS7CyeI7P4cfoUtK7ilh9GGxYqSgVTU_QKe0ZGSY3-hw9xeUiBN0FuOCEFYyKY7RCaOSEMnIKdJTb1SLZy4BnkELJrlvl9ZYdRaPfdf4sFTJ-W5jUuhN6gNE7Dqc5oAn7dr46Kwz-MnnhZlxMWaMfYPH0LZeOx_hHB01qo1wsZsD9Pny_DF-HU7fJ2_jx-lQFZSnoW4AjJZG07Kk3DaqqSy3glsjWKVFqXhBOAg2KiUYVnFNK2kLKIQWUGlr-ADdbHNXwX_1EFO9dNHkM1QHvo-1lDJHSEGzvP1X0lHJSzoigmd6t6Um-BgDNPUquKUK65qSelN-vS8_26tdbK-XYPfyt-0MrrdAmVgvfB9yrfGPoB_k_YwH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753517063</pqid></control><display><type>article</type><title>Local Site Selectivity and Conformational Structures in the Glycosidic Bond Scission of Cellobiose</title><source>MEDLINE</source><source>ACS Publications</source><creator>Liang, Xiao ; Montoya, Alejandro ; Haynes, Brian S.</creator><creatorcontrib>Liang, Xiao ; Montoya, Alejandro ; Haynes, Brian S.</creatorcontrib><description>Car–Parrinello molecular dynamics combined with metadynamics simulations were used to study the acid-catalyzed hydrolysis of cellobiose (CB) in aqueous solution. The hydrolysis was studied in two steps. Step 1 involves the proton transfer from solvent to CB and dissociation of the glycosidic bond to β-glucose and oxacarbenium ion species. Step 2 involves the formation of α-glucose from oxacarbenium and regeneration of the acid proton species. Step 1 is endothermic, while Step 2 is exothermic. The overall activation free energy of CB hydrolysis is 32.5 kcal mol–1, and the overall reaction free energy is −5.9 kcal mol–l, consistent with available experimental data. We observe that a stepwise mechanism generally described in the literature for Step 1 is not significantly favored relative to a concerted β-1,4′ linkage dissociation process.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp204199h</identifier><identifier>PMID: 21800820</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>B: Statistical Mechanics, Thermodynamics, Medium Effects ; Bonding ; Catalysis ; Cellobiose - chemistry ; Endothermic reactions ; Entropy ; Exothermic reactions ; Free energy ; Glucose - chemistry ; Glycosides - chemistry ; Hydrolysis ; Molecular Conformation ; Molecular Dynamics Simulation ; Scission ; Simulation ; Solvents</subject><ispartof>The journal of physical chemistry. B, 2011-09, Vol.115 (36), p.10682-10691</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a413t-bfeecb8cb15513dfaf9d3d63dc629b65a3403e62758ec293b198d4e46b6e9bdc3</citedby><cites>FETCH-LOGICAL-a413t-bfeecb8cb15513dfaf9d3d63dc629b65a3403e62758ec293b198d4e46b6e9bdc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp204199h$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp204199h$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21800820$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Xiao</creatorcontrib><creatorcontrib>Montoya, Alejandro</creatorcontrib><creatorcontrib>Haynes, Brian S.</creatorcontrib><title>Local Site Selectivity and Conformational Structures in the Glycosidic Bond Scission of Cellobiose</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Car–Parrinello molecular dynamics combined with metadynamics simulations were used to study the acid-catalyzed hydrolysis of cellobiose (CB) in aqueous solution. The hydrolysis was studied in two steps. Step 1 involves the proton transfer from solvent to CB and dissociation of the glycosidic bond to β-glucose and oxacarbenium ion species. Step 2 involves the formation of α-glucose from oxacarbenium and regeneration of the acid proton species. Step 1 is endothermic, while Step 2 is exothermic. The overall activation free energy of CB hydrolysis is 32.5 kcal mol–1, and the overall reaction free energy is −5.9 kcal mol–l, consistent with available experimental data. We observe that a stepwise mechanism generally described in the literature for Step 1 is not significantly favored relative to a concerted β-1,4′ linkage dissociation process.</description><subject>B: Statistical Mechanics, Thermodynamics, Medium Effects</subject><subject>Bonding</subject><subject>Catalysis</subject><subject>Cellobiose - chemistry</subject><subject>Endothermic reactions</subject><subject>Entropy</subject><subject>Exothermic reactions</subject><subject>Free energy</subject><subject>Glucose - chemistry</subject><subject>Glycosides - chemistry</subject><subject>Hydrolysis</subject><subject>Molecular Conformation</subject><subject>Molecular Dynamics Simulation</subject><subject>Scission</subject><subject>Simulation</subject><subject>Solvents</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90MtKAzEUBuAgipfqwheQbERdVHOZSTNLLVqFgovqesjlDE2ZTmqSEfr2prR2JS7CyeI7P4cfoUtK7ilh9GGxYqSgVTU_QKe0ZGSY3-hw9xeUiBN0FuOCEFYyKY7RCaOSEMnIKdJTb1SLZy4BnkELJrlvl9ZYdRaPfdf4sFTJ-W5jUuhN6gNE7Dqc5oAn7dr46Kwz-MnnhZlxMWaMfYPH0LZeOx_hHB01qo1wsZsD9Pny_DF-HU7fJ2_jx-lQFZSnoW4AjJZG07Kk3DaqqSy3glsjWKVFqXhBOAg2KiUYVnFNK2kLKIQWUGlr-ADdbHNXwX_1EFO9dNHkM1QHvo-1lDJHSEGzvP1X0lHJSzoigmd6t6Um-BgDNPUquKUK65qSelN-vS8_26tdbK-XYPfyt-0MrrdAmVgvfB9yrfGPoB_k_YwH</recordid><startdate>20110915</startdate><enddate>20110915</enddate><creator>Liang, Xiao</creator><creator>Montoya, Alejandro</creator><creator>Haynes, Brian S.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20110915</creationdate><title>Local Site Selectivity and Conformational Structures in the Glycosidic Bond Scission of Cellobiose</title><author>Liang, Xiao ; Montoya, Alejandro ; Haynes, Brian S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a413t-bfeecb8cb15513dfaf9d3d63dc629b65a3403e62758ec293b198d4e46b6e9bdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>B: Statistical Mechanics, Thermodynamics, Medium Effects</topic><topic>Bonding</topic><topic>Catalysis</topic><topic>Cellobiose - chemistry</topic><topic>Endothermic reactions</topic><topic>Entropy</topic><topic>Exothermic reactions</topic><topic>Free energy</topic><topic>Glucose - chemistry</topic><topic>Glycosides - chemistry</topic><topic>Hydrolysis</topic><topic>Molecular Conformation</topic><topic>Molecular Dynamics Simulation</topic><topic>Scission</topic><topic>Simulation</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Xiao</creatorcontrib><creatorcontrib>Montoya, Alejandro</creatorcontrib><creatorcontrib>Haynes, Brian S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Xiao</au><au>Montoya, Alejandro</au><au>Haynes, Brian S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Site Selectivity and Conformational Structures in the Glycosidic Bond Scission of Cellobiose</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2011-09-15</date><risdate>2011</risdate><volume>115</volume><issue>36</issue><spage>10682</spage><epage>10691</epage><pages>10682-10691</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Car–Parrinello molecular dynamics combined with metadynamics simulations were used to study the acid-catalyzed hydrolysis of cellobiose (CB) in aqueous solution. The hydrolysis was studied in two steps. Step 1 involves the proton transfer from solvent to CB and dissociation of the glycosidic bond to β-glucose and oxacarbenium ion species. Step 2 involves the formation of α-glucose from oxacarbenium and regeneration of the acid proton species. Step 1 is endothermic, while Step 2 is exothermic. The overall activation free energy of CB hydrolysis is 32.5 kcal mol–1, and the overall reaction free energy is −5.9 kcal mol–l, consistent with available experimental data. We observe that a stepwise mechanism generally described in the literature for Step 1 is not significantly favored relative to a concerted β-1,4′ linkage dissociation process.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>21800820</pmid><doi>10.1021/jp204199h</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2011-09, Vol.115 (36), p.10682-10691
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_888340861
source MEDLINE; ACS Publications
subjects B: Statistical Mechanics, Thermodynamics, Medium Effects
Bonding
Catalysis
Cellobiose - chemistry
Endothermic reactions
Entropy
Exothermic reactions
Free energy
Glucose - chemistry
Glycosides - chemistry
Hydrolysis
Molecular Conformation
Molecular Dynamics Simulation
Scission
Simulation
Solvents
title Local Site Selectivity and Conformational Structures in the Glycosidic Bond Scission of Cellobiose
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A44%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Site%20Selectivity%20and%20Conformational%20Structures%20in%20the%20Glycosidic%20Bond%20Scission%20of%20Cellobiose&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Liang,%20Xiao&rft.date=2011-09-15&rft.volume=115&rft.issue=36&rft.spage=10682&rft.epage=10691&rft.pages=10682-10691&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp204199h&rft_dat=%3Cproquest_cross%3E1753517063%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753517063&rft_id=info:pmid/21800820&rfr_iscdi=true