From Single to Multiple Ag-Layer Modification of Au Nanocavity Substrates: A Tunable Probe of the Chemical Surface-Enhanced Raman Scattering Mechanism

We present experimental and computational results that enlighten the mechanisms underlying the chemical contribution to surface-enhanced Raman scattering (SERS). Gold void metallic arrays electrochemically covered either by a Ag monolayer or 10–100 Ag layers were modified with a self-assembled monol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2011-07, Vol.5 (7), p.5433-5443
Hauptverfasser: Tognalli, Nicolás G, Cortés, Emiliano, Hernández-Nieves, Alexander D, Carro, Pilar, Usaj, Gonzalo, Balseiro, Carlos A, Vela, María E, Salvarezza, Roberto C, Fainstein, Alejandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5443
container_issue 7
container_start_page 5433
container_title ACS nano
container_volume 5
creator Tognalli, Nicolás G
Cortés, Emiliano
Hernández-Nieves, Alexander D
Carro, Pilar
Usaj, Gonzalo
Balseiro, Carlos A
Vela, María E
Salvarezza, Roberto C
Fainstein, Alejandro
description We present experimental and computational results that enlighten the mechanisms underlying the chemical contribution to surface-enhanced Raman scattering (SERS). Gold void metallic arrays electrochemically covered either by a Ag monolayer or 10–100 Ag layers were modified with a self-assembled monolayer of 4-mercaptopyridine as a molecular Raman probe displaying a rich and unexpected Raman response. A resonant increase of the Raman intensity in the red part of the spectrum is observed that cannot be related to plasmon excitations of the cavity-array. Notably, we find an additional 10–20 time increase of the SERS amplification upon deposition of a single Ag layer on the Au substrate, which is, however, almost quenched upon deposition of 10 atomic layers. Further deposition of 100 atomic Ag layers results in a new increase of the SERS signal, consistent with the improved plasmonic efficiency of Ag bulk-like structures. The SERS response as a function of the Ag layer thickness is analyzed in terms of ab initio calculations and a microscopic model for the SERS chemical mechanism based on a resonant charge transfer process between the molecular HOMO state and the Fermi level in the metal surface. We find that a rearrangement of the electronic charge density related to the presence of the Ag monolayer in the Au/Ag/molecule complex causes an increase in the distance between the HOMO center of charge and the metallic image plane that is responsible for the variation of Raman enhancement between the studied substrates. Our results provide a general platform for studying the chemical contribution to SERS, and for enhancing the Raman efficiency of tailored Au-SERS templates through electrochemical modification with Ag films.
doi_str_mv 10.1021/nn200567m
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_888337284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753476383</sourcerecordid><originalsourceid>FETCH-LOGICAL-a446t-2f264f27ac1cb652c7ebd09f8cc9bf7bfcc098dc23618f1852401e6c7a5f8ac3</originalsourceid><addsrcrecordid>eNqN0cGO0zAQBmALgdilcOAFkC8IOARsJ7EdblW1C0gtINoDt2jijLdZJXaxHaS-CM-LV116QoiTR_I3v0YzhDzn7C1ngr9zTjBWSzU9IJe8KWXBtPz-8FzX_II8ifE2G6WVfEwuBJeqVrK5JL-ug5_odnA3I9Lk6WYe03DI9fKmWMMRA934frCDgTR4R72ly5l-BucN_BzSkW7nLqYACeN7uqS72UGXm78G3-EdTnukqz1OuX_MNlgwWFy5PTiDPf0GEzi6zdkJQx6BbtDkryFOT8kjC2PEZ_fvguyur3arj8X6y4dPq-W6gKqSqRBWyMoKBYabTtbCKOx61lhtTNNZ1VljWKN7I0rJteW6FhXjKI2C2mow5YK8OsUegv8xY0ztNESD4wgO_RxbrXVZKqGrLF__U3JVl1WT91r_H1WyzNEL8uZETfAxBrTtIQwThGPLWXt32vZ82mxf3MfO3YT9Wf65ZQYvTwBMbG_9HFze3F-CfgOhb6ue</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753476383</pqid></control><display><type>article</type><title>From Single to Multiple Ag-Layer Modification of Au Nanocavity Substrates: A Tunable Probe of the Chemical Surface-Enhanced Raman Scattering Mechanism</title><source>American Chemical Society Web Editions</source><creator>Tognalli, Nicolás G ; Cortés, Emiliano ; Hernández-Nieves, Alexander D ; Carro, Pilar ; Usaj, Gonzalo ; Balseiro, Carlos A ; Vela, María E ; Salvarezza, Roberto C ; Fainstein, Alejandro</creator><creatorcontrib>Tognalli, Nicolás G ; Cortés, Emiliano ; Hernández-Nieves, Alexander D ; Carro, Pilar ; Usaj, Gonzalo ; Balseiro, Carlos A ; Vela, María E ; Salvarezza, Roberto C ; Fainstein, Alejandro</creatorcontrib><description>We present experimental and computational results that enlighten the mechanisms underlying the chemical contribution to surface-enhanced Raman scattering (SERS). Gold void metallic arrays electrochemically covered either by a Ag monolayer or 10–100 Ag layers were modified with a self-assembled monolayer of 4-mercaptopyridine as a molecular Raman probe displaying a rich and unexpected Raman response. A resonant increase of the Raman intensity in the red part of the spectrum is observed that cannot be related to plasmon excitations of the cavity-array. Notably, we find an additional 10–20 time increase of the SERS amplification upon deposition of a single Ag layer on the Au substrate, which is, however, almost quenched upon deposition of 10 atomic layers. Further deposition of 100 atomic Ag layers results in a new increase of the SERS signal, consistent with the improved plasmonic efficiency of Ag bulk-like structures. The SERS response as a function of the Ag layer thickness is analyzed in terms of ab initio calculations and a microscopic model for the SERS chemical mechanism based on a resonant charge transfer process between the molecular HOMO state and the Fermi level in the metal surface. We find that a rearrangement of the electronic charge density related to the presence of the Ag monolayer in the Au/Ag/molecule complex causes an increase in the distance between the HOMO center of charge and the metallic image plane that is responsible for the variation of Raman enhancement between the studied substrates. Our results provide a general platform for studying the chemical contribution to SERS, and for enhancing the Raman efficiency of tailored Au-SERS templates through electrochemical modification with Ag films.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn200567m</identifier><identifier>PMID: 21675769</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Atomic structure ; Charge density ; Deposition ; Gold ; Mathematical models ; Nanostructure ; Raman scattering ; Silver</subject><ispartof>ACS nano, 2011-07, Vol.5 (7), p.5433-5443</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a446t-2f264f27ac1cb652c7ebd09f8cc9bf7bfcc098dc23618f1852401e6c7a5f8ac3</citedby><cites>FETCH-LOGICAL-a446t-2f264f27ac1cb652c7ebd09f8cc9bf7bfcc098dc23618f1852401e6c7a5f8ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn200567m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn200567m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21675769$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tognalli, Nicolás G</creatorcontrib><creatorcontrib>Cortés, Emiliano</creatorcontrib><creatorcontrib>Hernández-Nieves, Alexander D</creatorcontrib><creatorcontrib>Carro, Pilar</creatorcontrib><creatorcontrib>Usaj, Gonzalo</creatorcontrib><creatorcontrib>Balseiro, Carlos A</creatorcontrib><creatorcontrib>Vela, María E</creatorcontrib><creatorcontrib>Salvarezza, Roberto C</creatorcontrib><creatorcontrib>Fainstein, Alejandro</creatorcontrib><title>From Single to Multiple Ag-Layer Modification of Au Nanocavity Substrates: A Tunable Probe of the Chemical Surface-Enhanced Raman Scattering Mechanism</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>We present experimental and computational results that enlighten the mechanisms underlying the chemical contribution to surface-enhanced Raman scattering (SERS). Gold void metallic arrays electrochemically covered either by a Ag monolayer or 10–100 Ag layers were modified with a self-assembled monolayer of 4-mercaptopyridine as a molecular Raman probe displaying a rich and unexpected Raman response. A resonant increase of the Raman intensity in the red part of the spectrum is observed that cannot be related to plasmon excitations of the cavity-array. Notably, we find an additional 10–20 time increase of the SERS amplification upon deposition of a single Ag layer on the Au substrate, which is, however, almost quenched upon deposition of 10 atomic layers. Further deposition of 100 atomic Ag layers results in a new increase of the SERS signal, consistent with the improved plasmonic efficiency of Ag bulk-like structures. The SERS response as a function of the Ag layer thickness is analyzed in terms of ab initio calculations and a microscopic model for the SERS chemical mechanism based on a resonant charge transfer process between the molecular HOMO state and the Fermi level in the metal surface. We find that a rearrangement of the electronic charge density related to the presence of the Ag monolayer in the Au/Ag/molecule complex causes an increase in the distance between the HOMO center of charge and the metallic image plane that is responsible for the variation of Raman enhancement between the studied substrates. Our results provide a general platform for studying the chemical contribution to SERS, and for enhancing the Raman efficiency of tailored Au-SERS templates through electrochemical modification with Ag films.</description><subject>Atomic structure</subject><subject>Charge density</subject><subject>Deposition</subject><subject>Gold</subject><subject>Mathematical models</subject><subject>Nanostructure</subject><subject>Raman scattering</subject><subject>Silver</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqN0cGO0zAQBmALgdilcOAFkC8IOARsJ7EdblW1C0gtINoDt2jijLdZJXaxHaS-CM-LV116QoiTR_I3v0YzhDzn7C1ngr9zTjBWSzU9IJe8KWXBtPz-8FzX_II8ifE2G6WVfEwuBJeqVrK5JL-ug5_odnA3I9Lk6WYe03DI9fKmWMMRA934frCDgTR4R72ly5l-BucN_BzSkW7nLqYACeN7uqS72UGXm78G3-EdTnukqz1OuX_MNlgwWFy5PTiDPf0GEzi6zdkJQx6BbtDkryFOT8kjC2PEZ_fvguyur3arj8X6y4dPq-W6gKqSqRBWyMoKBYabTtbCKOx61lhtTNNZ1VljWKN7I0rJteW6FhXjKI2C2mow5YK8OsUegv8xY0ztNESD4wgO_RxbrXVZKqGrLF__U3JVl1WT91r_H1WyzNEL8uZETfAxBrTtIQwThGPLWXt32vZ82mxf3MfO3YT9Wf65ZQYvTwBMbG_9HFze3F-CfgOhb6ue</recordid><startdate>20110726</startdate><enddate>20110726</enddate><creator>Tognalli, Nicolás G</creator><creator>Cortés, Emiliano</creator><creator>Hernández-Nieves, Alexander D</creator><creator>Carro, Pilar</creator><creator>Usaj, Gonzalo</creator><creator>Balseiro, Carlos A</creator><creator>Vela, María E</creator><creator>Salvarezza, Roberto C</creator><creator>Fainstein, Alejandro</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20110726</creationdate><title>From Single to Multiple Ag-Layer Modification of Au Nanocavity Substrates: A Tunable Probe of the Chemical Surface-Enhanced Raman Scattering Mechanism</title><author>Tognalli, Nicolás G ; Cortés, Emiliano ; Hernández-Nieves, Alexander D ; Carro, Pilar ; Usaj, Gonzalo ; Balseiro, Carlos A ; Vela, María E ; Salvarezza, Roberto C ; Fainstein, Alejandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a446t-2f264f27ac1cb652c7ebd09f8cc9bf7bfcc098dc23618f1852401e6c7a5f8ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atomic structure</topic><topic>Charge density</topic><topic>Deposition</topic><topic>Gold</topic><topic>Mathematical models</topic><topic>Nanostructure</topic><topic>Raman scattering</topic><topic>Silver</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tognalli, Nicolás G</creatorcontrib><creatorcontrib>Cortés, Emiliano</creatorcontrib><creatorcontrib>Hernández-Nieves, Alexander D</creatorcontrib><creatorcontrib>Carro, Pilar</creatorcontrib><creatorcontrib>Usaj, Gonzalo</creatorcontrib><creatorcontrib>Balseiro, Carlos A</creatorcontrib><creatorcontrib>Vela, María E</creatorcontrib><creatorcontrib>Salvarezza, Roberto C</creatorcontrib><creatorcontrib>Fainstein, Alejandro</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tognalli, Nicolás G</au><au>Cortés, Emiliano</au><au>Hernández-Nieves, Alexander D</au><au>Carro, Pilar</au><au>Usaj, Gonzalo</au><au>Balseiro, Carlos A</au><au>Vela, María E</au><au>Salvarezza, Roberto C</au><au>Fainstein, Alejandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From Single to Multiple Ag-Layer Modification of Au Nanocavity Substrates: A Tunable Probe of the Chemical Surface-Enhanced Raman Scattering Mechanism</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2011-07-26</date><risdate>2011</risdate><volume>5</volume><issue>7</issue><spage>5433</spage><epage>5443</epage><pages>5433-5443</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>We present experimental and computational results that enlighten the mechanisms underlying the chemical contribution to surface-enhanced Raman scattering (SERS). Gold void metallic arrays electrochemically covered either by a Ag monolayer or 10–100 Ag layers were modified with a self-assembled monolayer of 4-mercaptopyridine as a molecular Raman probe displaying a rich and unexpected Raman response. A resonant increase of the Raman intensity in the red part of the spectrum is observed that cannot be related to plasmon excitations of the cavity-array. Notably, we find an additional 10–20 time increase of the SERS amplification upon deposition of a single Ag layer on the Au substrate, which is, however, almost quenched upon deposition of 10 atomic layers. Further deposition of 100 atomic Ag layers results in a new increase of the SERS signal, consistent with the improved plasmonic efficiency of Ag bulk-like structures. The SERS response as a function of the Ag layer thickness is analyzed in terms of ab initio calculations and a microscopic model for the SERS chemical mechanism based on a resonant charge transfer process between the molecular HOMO state and the Fermi level in the metal surface. We find that a rearrangement of the electronic charge density related to the presence of the Ag monolayer in the Au/Ag/molecule complex causes an increase in the distance between the HOMO center of charge and the metallic image plane that is responsible for the variation of Raman enhancement between the studied substrates. Our results provide a general platform for studying the chemical contribution to SERS, and for enhancing the Raman efficiency of tailored Au-SERS templates through electrochemical modification with Ag films.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>21675769</pmid><doi>10.1021/nn200567m</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2011-07, Vol.5 (7), p.5433-5443
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_888337284
source American Chemical Society Web Editions
subjects Atomic structure
Charge density
Deposition
Gold
Mathematical models
Nanostructure
Raman scattering
Silver
title From Single to Multiple Ag-Layer Modification of Au Nanocavity Substrates: A Tunable Probe of the Chemical Surface-Enhanced Raman Scattering Mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20Single%20to%20Multiple%20Ag-Layer%20Modification%20of%20Au%20Nanocavity%20Substrates:%20A%20Tunable%20Probe%20of%20the%20Chemical%20Surface-Enhanced%20Raman%20Scattering%20Mechanism&rft.jtitle=ACS%20nano&rft.au=Tognalli,%20Nicola%CC%81s%20G&rft.date=2011-07-26&rft.volume=5&rft.issue=7&rft.spage=5433&rft.epage=5443&rft.pages=5433-5443&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn200567m&rft_dat=%3Cproquest_cross%3E1753476383%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753476383&rft_id=info:pmid/21675769&rfr_iscdi=true