Comparative life cycle energy, emission, and economic analysis of 100 kW nameplate wind power generation

This study compares three configurations of wind turbines to produce a nameplate power of 100 kW applying LCA methodology over a lifetime of 25 years. Alternatives under study are: installing twenty Endurance (EN) 5 kW, or five Jacobs (JA) 20 kW, or one Northern Power (NP) 100 kW turbines in the Hal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Renewable energy 2012, Vol.37 (1), p.133-141
Hauptverfasser: Kabir, Md Ruhul, Rooke, Braden, Dassanayake, G.D. Malinga, Fleck, Brian A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 141
container_issue 1
container_start_page 133
container_title Renewable energy
container_volume 37
creator Kabir, Md Ruhul
Rooke, Braden
Dassanayake, G.D. Malinga
Fleck, Brian A.
description This study compares three configurations of wind turbines to produce a nameplate power of 100 kW applying LCA methodology over a lifetime of 25 years. Alternatives under study are: installing twenty Endurance (EN) 5 kW, or five Jacobs (JA) 20 kW, or one Northern Power (NP) 100 kW turbines in the Halkirk region of Alberta, Canada. The comparison has been done taking life cycle energy, environment and economic aspects into consideration. Each parameter has been quantified corresponding to a functional unit (FU) of 1 kWh. Life cycle energy requirement for NP is found to be 133.3 kJ/kWh, which is about 69% and 41% less than EN and JA respectively. Global warming impact from NP is found to be 17.8 gCO 2eq/kWh, which is around 58% and 29% less respective to EN and JA. The acidification (SO 2eq/kWh) and ground level ozone [(VOC + NOx)/kWh] impacts from NP are also found significantly less compared to EN and JA configuration. The difference in relative environmental impacts from configurations is found to be less while performing uncertainty analysis, but does not alter the ranking of configurations. At 10% internal rate of return (IRR), electricity price for NP is 0.21$/kWh, whereas EN and JA prices are 65% and 16% higher respectively. ► Energy payback period is found in the range of 0.6–1.4 year for the turbines. ► GHG emission payback period is found between 0.5 and 1.4 year. ► Acidification and ozone depletion payback periods are found to be less than a week. ► To achieve 10% IRR, electricity must be sold in the range of $0.21–0.61/kWh.
doi_str_mv 10.1016/j.renene.2011.06.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_888117454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148111002953</els_id><sourcerecordid>888117454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-dd1adb5da62a30cdc52d6a25b68b807a69dde0ad9423f359e204478bb4c86e773</originalsourceid><addsrcrecordid>eNp9kc2KFDEQxxtRcFx9A8FcRA_bY6U7X30RZPALFjzo4jFUJ9VDxp5Om_TuMm_js_hkppnF45JDEfjVryr5V9VLDlsOXL07bBNN5Wwb4HwLagvQPqo23OiuBmWax9UGOgU1F4Y_rZ7lfADg0mixqcIuHmdMuIRbYmMYiLmTG4kVW9qfLhkdQ84hTpcMJ8_IxSkegysXHE85ZBYHxgH-_vn1k014pHnEhdhdKOwc7yix_Soq9jg9r54MOGZ6cV8vqutPH3_svtRX3z5_3X24qp1Qaqm95-h76VE12ILzTjZeYSN7ZXoDGlXnPQH6TjTt0MqOGhBCm74XzijSur2o3py9c4q_bygvtjzB0TjiRPEmW2MM51pIUci3D5Jca2h5Z9QqFWfUpZhzosHOKRwxnSwHu2ZgD_acgV0zsKBsyaC0vb6fgNnhOCScXMj_exuhpdTNqn915gaMFvepMNffi0iWnFTXSVmI92eCytfdBko2u0CTIx8SucX6GB5e5R87eaj2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770319867</pqid></control><display><type>article</type><title>Comparative life cycle energy, emission, and economic analysis of 100 kW nameplate wind power generation</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kabir, Md Ruhul ; Rooke, Braden ; Dassanayake, G.D. Malinga ; Fleck, Brian A.</creator><creatorcontrib>Kabir, Md Ruhul ; Rooke, Braden ; Dassanayake, G.D. Malinga ; Fleck, Brian A.</creatorcontrib><description>This study compares three configurations of wind turbines to produce a nameplate power of 100 kW applying LCA methodology over a lifetime of 25 years. Alternatives under study are: installing twenty Endurance (EN) 5 kW, or five Jacobs (JA) 20 kW, or one Northern Power (NP) 100 kW turbines in the Halkirk region of Alberta, Canada. The comparison has been done taking life cycle energy, environment and economic aspects into consideration. Each parameter has been quantified corresponding to a functional unit (FU) of 1 kWh. Life cycle energy requirement for NP is found to be 133.3 kJ/kWh, which is about 69% and 41% less than EN and JA respectively. Global warming impact from NP is found to be 17.8 gCO 2eq/kWh, which is around 58% and 29% less respective to EN and JA. The acidification (SO 2eq/kWh) and ground level ozone [(VOC + NOx)/kWh] impacts from NP are also found significantly less compared to EN and JA configuration. The difference in relative environmental impacts from configurations is found to be less while performing uncertainty analysis, but does not alter the ranking of configurations. At 10% internal rate of return (IRR), electricity price for NP is 0.21$/kWh, whereas EN and JA prices are 65% and 16% higher respectively. ► Energy payback period is found in the range of 0.6–1.4 year for the turbines. ► GHG emission payback period is found between 0.5 and 1.4 year. ► Acidification and ozone depletion payback periods are found to be less than a week. ► To achieve 10% IRR, electricity must be sold in the range of $0.21–0.61/kWh.</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2011.06.003</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>acidification ; Air pollution caused by fuel industries ; Applied sciences ; Durability ; economic analysis ; Economic data ; Economics ; Electric power generation ; electricity ; Emission analysis ; Endurance ; Energy ; Energy economics ; Energy. Thermal use of fuels ; environmental impact ; Exact sciences and technology ; General, economic and professional studies ; General. Regulations. Norms. Economy ; Global warming ; Life cycle assessment ; Life cycle engineering ; Metering. Control ; Natural energy ; nitrogen oxides ; ozone ; power generation ; prices ; Renewable energy ; uncertainty analysis ; volatile organic compounds ; Wind energy ; Wind energy economics ; wind power ; Wind turbine ; Wind turbines</subject><ispartof>Renewable energy, 2012, Vol.37 (1), p.133-141</ispartof><rights>2011 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-dd1adb5da62a30cdc52d6a25b68b807a69dde0ad9423f359e204478bb4c86e773</citedby><cites>FETCH-LOGICAL-c466t-dd1adb5da62a30cdc52d6a25b68b807a69dde0ad9423f359e204478bb4c86e773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.renene.2011.06.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,4012,27906,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24755727$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kabir, Md Ruhul</creatorcontrib><creatorcontrib>Rooke, Braden</creatorcontrib><creatorcontrib>Dassanayake, G.D. Malinga</creatorcontrib><creatorcontrib>Fleck, Brian A.</creatorcontrib><title>Comparative life cycle energy, emission, and economic analysis of 100 kW nameplate wind power generation</title><title>Renewable energy</title><description>This study compares three configurations of wind turbines to produce a nameplate power of 100 kW applying LCA methodology over a lifetime of 25 years. Alternatives under study are: installing twenty Endurance (EN) 5 kW, or five Jacobs (JA) 20 kW, or one Northern Power (NP) 100 kW turbines in the Halkirk region of Alberta, Canada. The comparison has been done taking life cycle energy, environment and economic aspects into consideration. Each parameter has been quantified corresponding to a functional unit (FU) of 1 kWh. Life cycle energy requirement for NP is found to be 133.3 kJ/kWh, which is about 69% and 41% less than EN and JA respectively. Global warming impact from NP is found to be 17.8 gCO 2eq/kWh, which is around 58% and 29% less respective to EN and JA. The acidification (SO 2eq/kWh) and ground level ozone [(VOC + NOx)/kWh] impacts from NP are also found significantly less compared to EN and JA configuration. The difference in relative environmental impacts from configurations is found to be less while performing uncertainty analysis, but does not alter the ranking of configurations. At 10% internal rate of return (IRR), electricity price for NP is 0.21$/kWh, whereas EN and JA prices are 65% and 16% higher respectively. ► Energy payback period is found in the range of 0.6–1.4 year for the turbines. ► GHG emission payback period is found between 0.5 and 1.4 year. ► Acidification and ozone depletion payback periods are found to be less than a week. ► To achieve 10% IRR, electricity must be sold in the range of $0.21–0.61/kWh.</description><subject>acidification</subject><subject>Air pollution caused by fuel industries</subject><subject>Applied sciences</subject><subject>Durability</subject><subject>economic analysis</subject><subject>Economic data</subject><subject>Economics</subject><subject>Electric power generation</subject><subject>electricity</subject><subject>Emission analysis</subject><subject>Endurance</subject><subject>Energy</subject><subject>Energy economics</subject><subject>Energy. Thermal use of fuels</subject><subject>environmental impact</subject><subject>Exact sciences and technology</subject><subject>General, economic and professional studies</subject><subject>General. Regulations. Norms. Economy</subject><subject>Global warming</subject><subject>Life cycle assessment</subject><subject>Life cycle engineering</subject><subject>Metering. Control</subject><subject>Natural energy</subject><subject>nitrogen oxides</subject><subject>ozone</subject><subject>power generation</subject><subject>prices</subject><subject>Renewable energy</subject><subject>uncertainty analysis</subject><subject>volatile organic compounds</subject><subject>Wind energy</subject><subject>Wind energy economics</subject><subject>wind power</subject><subject>Wind turbine</subject><subject>Wind turbines</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kc2KFDEQxxtRcFx9A8FcRA_bY6U7X30RZPALFjzo4jFUJ9VDxp5Om_TuMm_js_hkppnF45JDEfjVryr5V9VLDlsOXL07bBNN5Wwb4HwLagvQPqo23OiuBmWax9UGOgU1F4Y_rZ7lfADg0mixqcIuHmdMuIRbYmMYiLmTG4kVW9qfLhkdQ84hTpcMJ8_IxSkegysXHE85ZBYHxgH-_vn1k014pHnEhdhdKOwc7yix_Soq9jg9r54MOGZ6cV8vqutPH3_svtRX3z5_3X24qp1Qaqm95-h76VE12ILzTjZeYSN7ZXoDGlXnPQH6TjTt0MqOGhBCm74XzijSur2o3py9c4q_bygvtjzB0TjiRPEmW2MM51pIUci3D5Jca2h5Z9QqFWfUpZhzosHOKRwxnSwHu2ZgD_acgV0zsKBsyaC0vb6fgNnhOCScXMj_exuhpdTNqn915gaMFvepMNffi0iWnFTXSVmI92eCytfdBko2u0CTIx8SucX6GB5e5R87eaj2</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Kabir, Md Ruhul</creator><creator>Rooke, Braden</creator><creator>Dassanayake, G.D. Malinga</creator><creator>Fleck, Brian A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>7ST</scope><scope>7TV</scope><scope>7U6</scope><scope>SOI</scope></search><sort><creationdate>2012</creationdate><title>Comparative life cycle energy, emission, and economic analysis of 100 kW nameplate wind power generation</title><author>Kabir, Md Ruhul ; Rooke, Braden ; Dassanayake, G.D. Malinga ; Fleck, Brian A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-dd1adb5da62a30cdc52d6a25b68b807a69dde0ad9423f359e204478bb4c86e773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>acidification</topic><topic>Air pollution caused by fuel industries</topic><topic>Applied sciences</topic><topic>Durability</topic><topic>economic analysis</topic><topic>Economic data</topic><topic>Economics</topic><topic>Electric power generation</topic><topic>electricity</topic><topic>Emission analysis</topic><topic>Endurance</topic><topic>Energy</topic><topic>Energy economics</topic><topic>Energy. Thermal use of fuels</topic><topic>environmental impact</topic><topic>Exact sciences and technology</topic><topic>General, economic and professional studies</topic><topic>General. Regulations. Norms. Economy</topic><topic>Global warming</topic><topic>Life cycle assessment</topic><topic>Life cycle engineering</topic><topic>Metering. Control</topic><topic>Natural energy</topic><topic>nitrogen oxides</topic><topic>ozone</topic><topic>power generation</topic><topic>prices</topic><topic>Renewable energy</topic><topic>uncertainty analysis</topic><topic>volatile organic compounds</topic><topic>Wind energy</topic><topic>Wind energy economics</topic><topic>wind power</topic><topic>Wind turbine</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kabir, Md Ruhul</creatorcontrib><creatorcontrib>Rooke, Braden</creatorcontrib><creatorcontrib>Dassanayake, G.D. Malinga</creatorcontrib><creatorcontrib>Fleck, Brian A.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kabir, Md Ruhul</au><au>Rooke, Braden</au><au>Dassanayake, G.D. Malinga</au><au>Fleck, Brian A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative life cycle energy, emission, and economic analysis of 100 kW nameplate wind power generation</atitle><jtitle>Renewable energy</jtitle><date>2012</date><risdate>2012</risdate><volume>37</volume><issue>1</issue><spage>133</spage><epage>141</epage><pages>133-141</pages><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>This study compares three configurations of wind turbines to produce a nameplate power of 100 kW applying LCA methodology over a lifetime of 25 years. Alternatives under study are: installing twenty Endurance (EN) 5 kW, or five Jacobs (JA) 20 kW, or one Northern Power (NP) 100 kW turbines in the Halkirk region of Alberta, Canada. The comparison has been done taking life cycle energy, environment and economic aspects into consideration. Each parameter has been quantified corresponding to a functional unit (FU) of 1 kWh. Life cycle energy requirement for NP is found to be 133.3 kJ/kWh, which is about 69% and 41% less than EN and JA respectively. Global warming impact from NP is found to be 17.8 gCO 2eq/kWh, which is around 58% and 29% less respective to EN and JA. The acidification (SO 2eq/kWh) and ground level ozone [(VOC + NOx)/kWh] impacts from NP are also found significantly less compared to EN and JA configuration. The difference in relative environmental impacts from configurations is found to be less while performing uncertainty analysis, but does not alter the ranking of configurations. At 10% internal rate of return (IRR), electricity price for NP is 0.21$/kWh, whereas EN and JA prices are 65% and 16% higher respectively. ► Energy payback period is found in the range of 0.6–1.4 year for the turbines. ► GHG emission payback period is found between 0.5 and 1.4 year. ► Acidification and ozone depletion payback periods are found to be less than a week. ► To achieve 10% IRR, electricity must be sold in the range of $0.21–0.61/kWh.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2011.06.003</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-1481
ispartof Renewable energy, 2012, Vol.37 (1), p.133-141
issn 0960-1481
1879-0682
language eng
recordid cdi_proquest_miscellaneous_888117454
source ScienceDirect Journals (5 years ago - present)
subjects acidification
Air pollution caused by fuel industries
Applied sciences
Durability
economic analysis
Economic data
Economics
Electric power generation
electricity
Emission analysis
Endurance
Energy
Energy economics
Energy. Thermal use of fuels
environmental impact
Exact sciences and technology
General, economic and professional studies
General. Regulations. Norms. Economy
Global warming
Life cycle assessment
Life cycle engineering
Metering. Control
Natural energy
nitrogen oxides
ozone
power generation
prices
Renewable energy
uncertainty analysis
volatile organic compounds
Wind energy
Wind energy economics
wind power
Wind turbine
Wind turbines
title Comparative life cycle energy, emission, and economic analysis of 100 kW nameplate wind power generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A13%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20life%20cycle%20energy,%20emission,%20and%20economic%20analysis%20of%20100%C2%A0kW%20nameplate%20wind%20power%20generation&rft.jtitle=Renewable%20energy&rft.au=Kabir,%20Md%20Ruhul&rft.date=2012&rft.volume=37&rft.issue=1&rft.spage=133&rft.epage=141&rft.pages=133-141&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2011.06.003&rft_dat=%3Cproquest_cross%3E888117454%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770319867&rft_id=info:pmid/&rft_els_id=S0960148111002953&rfr_iscdi=true