Comparative life cycle energy, emission, and economic analysis of 100 kW nameplate wind power generation
This study compares three configurations of wind turbines to produce a nameplate power of 100 kW applying LCA methodology over a lifetime of 25 years. Alternatives under study are: installing twenty Endurance (EN) 5 kW, or five Jacobs (JA) 20 kW, or one Northern Power (NP) 100 kW turbines in the Hal...
Gespeichert in:
Veröffentlicht in: | Renewable energy 2012, Vol.37 (1), p.133-141 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 141 |
---|---|
container_issue | 1 |
container_start_page | 133 |
container_title | Renewable energy |
container_volume | 37 |
creator | Kabir, Md Ruhul Rooke, Braden Dassanayake, G.D. Malinga Fleck, Brian A. |
description | This study compares three configurations of wind turbines to produce a nameplate power of 100 kW applying LCA methodology over a lifetime of 25 years. Alternatives under study are: installing twenty Endurance (EN) 5 kW, or five Jacobs (JA) 20 kW, or one Northern Power (NP) 100 kW turbines in the Halkirk region of Alberta, Canada. The comparison has been done taking life cycle energy, environment and economic aspects into consideration. Each parameter has been quantified corresponding to a functional unit (FU) of 1 kWh. Life cycle energy requirement for NP is found to be 133.3 kJ/kWh, which is about 69% and 41% less than EN and JA respectively. Global warming impact from NP is found to be 17.8 gCO
2eq/kWh, which is around 58% and 29% less respective to EN and JA. The acidification (SO
2eq/kWh) and ground level ozone [(VOC + NOx)/kWh] impacts from NP are also found significantly less compared to EN and JA configuration. The difference in relative environmental impacts from configurations is found to be less while performing uncertainty analysis, but does not alter the ranking of configurations. At 10% internal rate of return (IRR), electricity price for NP is 0.21$/kWh, whereas EN and JA prices are 65% and 16% higher respectively.
► Energy payback period is found in the range of 0.6–1.4 year for the turbines. ► GHG emission payback period is found between 0.5 and 1.4 year. ► Acidification and ozone depletion payback periods are found to be less than a week. ► To achieve 10% IRR, electricity must be sold in the range of $0.21–0.61/kWh. |
doi_str_mv | 10.1016/j.renene.2011.06.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_888117454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148111002953</els_id><sourcerecordid>888117454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-dd1adb5da62a30cdc52d6a25b68b807a69dde0ad9423f359e204478bb4c86e773</originalsourceid><addsrcrecordid>eNp9kc2KFDEQxxtRcFx9A8FcRA_bY6U7X30RZPALFjzo4jFUJ9VDxp5Om_TuMm_js_hkppnF45JDEfjVryr5V9VLDlsOXL07bBNN5Wwb4HwLagvQPqo23OiuBmWax9UGOgU1F4Y_rZ7lfADg0mixqcIuHmdMuIRbYmMYiLmTG4kVW9qfLhkdQ84hTpcMJ8_IxSkegysXHE85ZBYHxgH-_vn1k014pHnEhdhdKOwc7yix_Soq9jg9r54MOGZ6cV8vqutPH3_svtRX3z5_3X24qp1Qaqm95-h76VE12ILzTjZeYSN7ZXoDGlXnPQH6TjTt0MqOGhBCm74XzijSur2o3py9c4q_bygvtjzB0TjiRPEmW2MM51pIUci3D5Jca2h5Z9QqFWfUpZhzosHOKRwxnSwHu2ZgD_acgV0zsKBsyaC0vb6fgNnhOCScXMj_exuhpdTNqn915gaMFvepMNffi0iWnFTXSVmI92eCytfdBko2u0CTIx8SucX6GB5e5R87eaj2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770319867</pqid></control><display><type>article</type><title>Comparative life cycle energy, emission, and economic analysis of 100 kW nameplate wind power generation</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kabir, Md Ruhul ; Rooke, Braden ; Dassanayake, G.D. Malinga ; Fleck, Brian A.</creator><creatorcontrib>Kabir, Md Ruhul ; Rooke, Braden ; Dassanayake, G.D. Malinga ; Fleck, Brian A.</creatorcontrib><description>This study compares three configurations of wind turbines to produce a nameplate power of 100 kW applying LCA methodology over a lifetime of 25 years. Alternatives under study are: installing twenty Endurance (EN) 5 kW, or five Jacobs (JA) 20 kW, or one Northern Power (NP) 100 kW turbines in the Halkirk region of Alberta, Canada. The comparison has been done taking life cycle energy, environment and economic aspects into consideration. Each parameter has been quantified corresponding to a functional unit (FU) of 1 kWh. Life cycle energy requirement for NP is found to be 133.3 kJ/kWh, which is about 69% and 41% less than EN and JA respectively. Global warming impact from NP is found to be 17.8 gCO
2eq/kWh, which is around 58% and 29% less respective to EN and JA. The acidification (SO
2eq/kWh) and ground level ozone [(VOC + NOx)/kWh] impacts from NP are also found significantly less compared to EN and JA configuration. The difference in relative environmental impacts from configurations is found to be less while performing uncertainty analysis, but does not alter the ranking of configurations. At 10% internal rate of return (IRR), electricity price for NP is 0.21$/kWh, whereas EN and JA prices are 65% and 16% higher respectively.
► Energy payback period is found in the range of 0.6–1.4 year for the turbines. ► GHG emission payback period is found between 0.5 and 1.4 year. ► Acidification and ozone depletion payback periods are found to be less than a week. ► To achieve 10% IRR, electricity must be sold in the range of $0.21–0.61/kWh.</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2011.06.003</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>acidification ; Air pollution caused by fuel industries ; Applied sciences ; Durability ; economic analysis ; Economic data ; Economics ; Electric power generation ; electricity ; Emission analysis ; Endurance ; Energy ; Energy economics ; Energy. Thermal use of fuels ; environmental impact ; Exact sciences and technology ; General, economic and professional studies ; General. Regulations. Norms. Economy ; Global warming ; Life cycle assessment ; Life cycle engineering ; Metering. Control ; Natural energy ; nitrogen oxides ; ozone ; power generation ; prices ; Renewable energy ; uncertainty analysis ; volatile organic compounds ; Wind energy ; Wind energy economics ; wind power ; Wind turbine ; Wind turbines</subject><ispartof>Renewable energy, 2012, Vol.37 (1), p.133-141</ispartof><rights>2011 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-dd1adb5da62a30cdc52d6a25b68b807a69dde0ad9423f359e204478bb4c86e773</citedby><cites>FETCH-LOGICAL-c466t-dd1adb5da62a30cdc52d6a25b68b807a69dde0ad9423f359e204478bb4c86e773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.renene.2011.06.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,4012,27906,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24755727$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kabir, Md Ruhul</creatorcontrib><creatorcontrib>Rooke, Braden</creatorcontrib><creatorcontrib>Dassanayake, G.D. Malinga</creatorcontrib><creatorcontrib>Fleck, Brian A.</creatorcontrib><title>Comparative life cycle energy, emission, and economic analysis of 100 kW nameplate wind power generation</title><title>Renewable energy</title><description>This study compares three configurations of wind turbines to produce a nameplate power of 100 kW applying LCA methodology over a lifetime of 25 years. Alternatives under study are: installing twenty Endurance (EN) 5 kW, or five Jacobs (JA) 20 kW, or one Northern Power (NP) 100 kW turbines in the Halkirk region of Alberta, Canada. The comparison has been done taking life cycle energy, environment and economic aspects into consideration. Each parameter has been quantified corresponding to a functional unit (FU) of 1 kWh. Life cycle energy requirement for NP is found to be 133.3 kJ/kWh, which is about 69% and 41% less than EN and JA respectively. Global warming impact from NP is found to be 17.8 gCO
2eq/kWh, which is around 58% and 29% less respective to EN and JA. The acidification (SO
2eq/kWh) and ground level ozone [(VOC + NOx)/kWh] impacts from NP are also found significantly less compared to EN and JA configuration. The difference in relative environmental impacts from configurations is found to be less while performing uncertainty analysis, but does not alter the ranking of configurations. At 10% internal rate of return (IRR), electricity price for NP is 0.21$/kWh, whereas EN and JA prices are 65% and 16% higher respectively.
► Energy payback period is found in the range of 0.6–1.4 year for the turbines. ► GHG emission payback period is found between 0.5 and 1.4 year. ► Acidification and ozone depletion payback periods are found to be less than a week. ► To achieve 10% IRR, electricity must be sold in the range of $0.21–0.61/kWh.</description><subject>acidification</subject><subject>Air pollution caused by fuel industries</subject><subject>Applied sciences</subject><subject>Durability</subject><subject>economic analysis</subject><subject>Economic data</subject><subject>Economics</subject><subject>Electric power generation</subject><subject>electricity</subject><subject>Emission analysis</subject><subject>Endurance</subject><subject>Energy</subject><subject>Energy economics</subject><subject>Energy. Thermal use of fuels</subject><subject>environmental impact</subject><subject>Exact sciences and technology</subject><subject>General, economic and professional studies</subject><subject>General. Regulations. Norms. Economy</subject><subject>Global warming</subject><subject>Life cycle assessment</subject><subject>Life cycle engineering</subject><subject>Metering. Control</subject><subject>Natural energy</subject><subject>nitrogen oxides</subject><subject>ozone</subject><subject>power generation</subject><subject>prices</subject><subject>Renewable energy</subject><subject>uncertainty analysis</subject><subject>volatile organic compounds</subject><subject>Wind energy</subject><subject>Wind energy economics</subject><subject>wind power</subject><subject>Wind turbine</subject><subject>Wind turbines</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kc2KFDEQxxtRcFx9A8FcRA_bY6U7X30RZPALFjzo4jFUJ9VDxp5Om_TuMm_js_hkppnF45JDEfjVryr5V9VLDlsOXL07bBNN5Wwb4HwLagvQPqo23OiuBmWax9UGOgU1F4Y_rZ7lfADg0mixqcIuHmdMuIRbYmMYiLmTG4kVW9qfLhkdQ84hTpcMJ8_IxSkegysXHE85ZBYHxgH-_vn1k014pHnEhdhdKOwc7yix_Soq9jg9r54MOGZ6cV8vqutPH3_svtRX3z5_3X24qp1Qaqm95-h76VE12ILzTjZeYSN7ZXoDGlXnPQH6TjTt0MqOGhBCm74XzijSur2o3py9c4q_bygvtjzB0TjiRPEmW2MM51pIUci3D5Jca2h5Z9QqFWfUpZhzosHOKRwxnSwHu2ZgD_acgV0zsKBsyaC0vb6fgNnhOCScXMj_exuhpdTNqn915gaMFvepMNffi0iWnFTXSVmI92eCytfdBko2u0CTIx8SucX6GB5e5R87eaj2</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Kabir, Md Ruhul</creator><creator>Rooke, Braden</creator><creator>Dassanayake, G.D. Malinga</creator><creator>Fleck, Brian A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>7ST</scope><scope>7TV</scope><scope>7U6</scope><scope>SOI</scope></search><sort><creationdate>2012</creationdate><title>Comparative life cycle energy, emission, and economic analysis of 100 kW nameplate wind power generation</title><author>Kabir, Md Ruhul ; Rooke, Braden ; Dassanayake, G.D. Malinga ; Fleck, Brian A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-dd1adb5da62a30cdc52d6a25b68b807a69dde0ad9423f359e204478bb4c86e773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>acidification</topic><topic>Air pollution caused by fuel industries</topic><topic>Applied sciences</topic><topic>Durability</topic><topic>economic analysis</topic><topic>Economic data</topic><topic>Economics</topic><topic>Electric power generation</topic><topic>electricity</topic><topic>Emission analysis</topic><topic>Endurance</topic><topic>Energy</topic><topic>Energy economics</topic><topic>Energy. Thermal use of fuels</topic><topic>environmental impact</topic><topic>Exact sciences and technology</topic><topic>General, economic and professional studies</topic><topic>General. Regulations. Norms. Economy</topic><topic>Global warming</topic><topic>Life cycle assessment</topic><topic>Life cycle engineering</topic><topic>Metering. Control</topic><topic>Natural energy</topic><topic>nitrogen oxides</topic><topic>ozone</topic><topic>power generation</topic><topic>prices</topic><topic>Renewable energy</topic><topic>uncertainty analysis</topic><topic>volatile organic compounds</topic><topic>Wind energy</topic><topic>Wind energy economics</topic><topic>wind power</topic><topic>Wind turbine</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kabir, Md Ruhul</creatorcontrib><creatorcontrib>Rooke, Braden</creatorcontrib><creatorcontrib>Dassanayake, G.D. Malinga</creatorcontrib><creatorcontrib>Fleck, Brian A.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kabir, Md Ruhul</au><au>Rooke, Braden</au><au>Dassanayake, G.D. Malinga</au><au>Fleck, Brian A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative life cycle energy, emission, and economic analysis of 100 kW nameplate wind power generation</atitle><jtitle>Renewable energy</jtitle><date>2012</date><risdate>2012</risdate><volume>37</volume><issue>1</issue><spage>133</spage><epage>141</epage><pages>133-141</pages><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>This study compares three configurations of wind turbines to produce a nameplate power of 100 kW applying LCA methodology over a lifetime of 25 years. Alternatives under study are: installing twenty Endurance (EN) 5 kW, or five Jacobs (JA) 20 kW, or one Northern Power (NP) 100 kW turbines in the Halkirk region of Alberta, Canada. The comparison has been done taking life cycle energy, environment and economic aspects into consideration. Each parameter has been quantified corresponding to a functional unit (FU) of 1 kWh. Life cycle energy requirement for NP is found to be 133.3 kJ/kWh, which is about 69% and 41% less than EN and JA respectively. Global warming impact from NP is found to be 17.8 gCO
2eq/kWh, which is around 58% and 29% less respective to EN and JA. The acidification (SO
2eq/kWh) and ground level ozone [(VOC + NOx)/kWh] impacts from NP are also found significantly less compared to EN and JA configuration. The difference in relative environmental impacts from configurations is found to be less while performing uncertainty analysis, but does not alter the ranking of configurations. At 10% internal rate of return (IRR), electricity price for NP is 0.21$/kWh, whereas EN and JA prices are 65% and 16% higher respectively.
► Energy payback period is found in the range of 0.6–1.4 year for the turbines. ► GHG emission payback period is found between 0.5 and 1.4 year. ► Acidification and ozone depletion payback periods are found to be less than a week. ► To achieve 10% IRR, electricity must be sold in the range of $0.21–0.61/kWh.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2011.06.003</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-1481 |
ispartof | Renewable energy, 2012, Vol.37 (1), p.133-141 |
issn | 0960-1481 1879-0682 |
language | eng |
recordid | cdi_proquest_miscellaneous_888117454 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | acidification Air pollution caused by fuel industries Applied sciences Durability economic analysis Economic data Economics Electric power generation electricity Emission analysis Endurance Energy Energy economics Energy. Thermal use of fuels environmental impact Exact sciences and technology General, economic and professional studies General. Regulations. Norms. Economy Global warming Life cycle assessment Life cycle engineering Metering. Control Natural energy nitrogen oxides ozone power generation prices Renewable energy uncertainty analysis volatile organic compounds Wind energy Wind energy economics wind power Wind turbine Wind turbines |
title | Comparative life cycle energy, emission, and economic analysis of 100 kW nameplate wind power generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A13%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20life%20cycle%20energy,%20emission,%20and%20economic%20analysis%20of%20100%C2%A0kW%20nameplate%20wind%20power%20generation&rft.jtitle=Renewable%20energy&rft.au=Kabir,%20Md%20Ruhul&rft.date=2012&rft.volume=37&rft.issue=1&rft.spage=133&rft.epage=141&rft.pages=133-141&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2011.06.003&rft_dat=%3Cproquest_cross%3E888117454%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770319867&rft_id=info:pmid/&rft_els_id=S0960148111002953&rfr_iscdi=true |