Seascorr: A MATLAB program for identifying the seasonal climate signal in an annual tree-ring time series

A common research task in dendroclimatology is identification of the monthly or seasonal climate signal in an annual time series of indices of ring width. A MATLAB function, seascorr, is introduced as a general statistical tool for identifying the signal. Monthly time series of primary and secondary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & geosciences 2011-09, Vol.37 (9), p.1234-1241
Hauptverfasser: Meko, D.M., Touchan, R., Anchukaitis, K.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1241
container_issue 9
container_start_page 1234
container_title Computers & geosciences
container_volume 37
creator Meko, D.M.
Touchan, R.
Anchukaitis, K.J.
description A common research task in dendroclimatology is identification of the monthly or seasonal climate signal in an annual time series of indices of ring width. A MATLAB function, seascorr, is introduced as a general statistical tool for identifying the signal. Monthly time series of primary and secondary climate variables are input to the function along with a tree-ring time series and specifications for seasonal groupings. The relationship of the tree-ring series with the seasonalized primary climate variable is summarized by simple correlations. The relationship with the secondary climate variable is summarized by partial correlations, controlling for the influence of the primary climate variable. Confidence intervals on sample correlations and partial correlations are estimated with the help of Monte Carlo simulation of the tree-ring series by exact simulation, which preserves the spectral properties of the observed series. Results are summarized in graphical and statistical output. The function is illustrated with examples from Tunisia and Russia.
doi_str_mv 10.1016/j.cageo.2011.01.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_888115711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009830041100104X</els_id><sourcerecordid>888115711</sourcerecordid><originalsourceid>FETCH-LOGICAL-a412t-815c62a0607c21f390ab09593f4b58dd54c4c5421ca8419dc463b488029c5ea13</originalsourceid><addsrcrecordid>eNp9kE9r3DAQxUVpodskn6CH6lJ68nb0z5YLPWxDkwa25JDkLGblsavFa6WSt5BvXzkbeiw8ECN-7zHzGHsvYC1A1J_3a48DxbUEIdawSL1iK2EbVTUW1Gu2AmhtpQD0W_Yu5z0ASGnNioU7wuxjSl_4hv_c3G833_hjikPCA-9j4qGjaQ79U5gGPv8ingseJxy5H8MB5_IRhmUME8dF07EMcyKq0rMlHBZPCpTP2Zsex0wXL-8Ze7j6fn_5o9reXt9cbrYVaiHnygrja4lQQ-Ol6FULuIPWtKrXO2O7zmivvdFSeLRatJ3Xtdppa0G23hAKdcY-nXLLGb-PlGd3CNnTOOJE8ZidtVYI04iFVCfSp5hzot49pnJUenIC3NKr27vnXt3Sq4NFqrg-vuSX4nDsE04-5H9WqbVWTW0L9-HE9RgdDqkwD3clqC7d18q0TSG-nggqdfwJlFz2gSZPXUjkZ9fF8N9N_gKZOZbx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>888115711</pqid></control><display><type>article</type><title>Seascorr: A MATLAB program for identifying the seasonal climate signal in an annual tree-ring time series</title><source>Access via ScienceDirect (Elsevier)</source><creator>Meko, D.M. ; Touchan, R. ; Anchukaitis, K.J.</creator><creatorcontrib>Meko, D.M. ; Touchan, R. ; Anchukaitis, K.J.</creatorcontrib><description>A common research task in dendroclimatology is identification of the monthly or seasonal climate signal in an annual time series of indices of ring width. A MATLAB function, seascorr, is introduced as a general statistical tool for identifying the signal. Monthly time series of primary and secondary climate variables are input to the function along with a tree-ring time series and specifications for seasonal groupings. The relationship of the tree-ring series with the seasonalized primary climate variable is summarized by simple correlations. The relationship with the secondary climate variable is summarized by partial correlations, controlling for the influence of the primary climate variable. Confidence intervals on sample correlations and partial correlations are estimated with the help of Monte Carlo simulation of the tree-ring series by exact simulation, which preserves the spectral properties of the observed series. Results are summarized in graphical and statistical output. The function is illustrated with examples from Tunisia and Russia.</description><identifier>ISSN: 0098-3004</identifier><identifier>EISSN: 1873-7803</identifier><identifier>DOI: 10.1016/j.cageo.2011.01.013</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>climatic factors ; computers ; confidence interval ; Dendroclimatology ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Exact simulation ; Geochronology ; growth rings ; Isotope geochemistry. Geochronology ; Marine and continental quaternary ; Monte Carlo method ; Paleobotany ; Paleoclimatology ; Paleontology ; spectral analysis ; Surficial geology ; time series analysis ; Tree growth ; Tunisia</subject><ispartof>Computers &amp; geosciences, 2011-09, Vol.37 (9), p.1234-1241</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a412t-815c62a0607c21f390ab09593f4b58dd54c4c5421ca8419dc463b488029c5ea13</citedby><cites>FETCH-LOGICAL-a412t-815c62a0607c21f390ab09593f4b58dd54c4c5421ca8419dc463b488029c5ea13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cageo.2011.01.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24443768$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Meko, D.M.</creatorcontrib><creatorcontrib>Touchan, R.</creatorcontrib><creatorcontrib>Anchukaitis, K.J.</creatorcontrib><title>Seascorr: A MATLAB program for identifying the seasonal climate signal in an annual tree-ring time series</title><title>Computers &amp; geosciences</title><description>A common research task in dendroclimatology is identification of the monthly or seasonal climate signal in an annual time series of indices of ring width. A MATLAB function, seascorr, is introduced as a general statistical tool for identifying the signal. Monthly time series of primary and secondary climate variables are input to the function along with a tree-ring time series and specifications for seasonal groupings. The relationship of the tree-ring series with the seasonalized primary climate variable is summarized by simple correlations. The relationship with the secondary climate variable is summarized by partial correlations, controlling for the influence of the primary climate variable. Confidence intervals on sample correlations and partial correlations are estimated with the help of Monte Carlo simulation of the tree-ring series by exact simulation, which preserves the spectral properties of the observed series. Results are summarized in graphical and statistical output. The function is illustrated with examples from Tunisia and Russia.</description><subject>climatic factors</subject><subject>computers</subject><subject>confidence interval</subject><subject>Dendroclimatology</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Exact simulation</subject><subject>Geochronology</subject><subject>growth rings</subject><subject>Isotope geochemistry. Geochronology</subject><subject>Marine and continental quaternary</subject><subject>Monte Carlo method</subject><subject>Paleobotany</subject><subject>Paleoclimatology</subject><subject>Paleontology</subject><subject>spectral analysis</subject><subject>Surficial geology</subject><subject>time series analysis</subject><subject>Tree growth</subject><subject>Tunisia</subject><issn>0098-3004</issn><issn>1873-7803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE9r3DAQxUVpodskn6CH6lJ68nb0z5YLPWxDkwa25JDkLGblsavFa6WSt5BvXzkbeiw8ECN-7zHzGHsvYC1A1J_3a48DxbUEIdawSL1iK2EbVTUW1Gu2AmhtpQD0W_Yu5z0ASGnNioU7wuxjSl_4hv_c3G833_hjikPCA-9j4qGjaQ79U5gGPv8ingseJxy5H8MB5_IRhmUME8dF07EMcyKq0rMlHBZPCpTP2Zsex0wXL-8Ze7j6fn_5o9reXt9cbrYVaiHnygrja4lQQ-Ol6FULuIPWtKrXO2O7zmivvdFSeLRatJ3Xtdppa0G23hAKdcY-nXLLGb-PlGd3CNnTOOJE8ZidtVYI04iFVCfSp5hzot49pnJUenIC3NKr27vnXt3Sq4NFqrg-vuSX4nDsE04-5H9WqbVWTW0L9-HE9RgdDqkwD3clqC7d18q0TSG-nggqdfwJlFz2gSZPXUjkZ9fF8N9N_gKZOZbx</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Meko, D.M.</creator><creator>Touchan, R.</creator><creator>Anchukaitis, K.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20110901</creationdate><title>Seascorr: A MATLAB program for identifying the seasonal climate signal in an annual tree-ring time series</title><author>Meko, D.M. ; Touchan, R. ; Anchukaitis, K.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a412t-815c62a0607c21f390ab09593f4b58dd54c4c5421ca8419dc463b488029c5ea13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>climatic factors</topic><topic>computers</topic><topic>confidence interval</topic><topic>Dendroclimatology</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Exact simulation</topic><topic>Geochronology</topic><topic>growth rings</topic><topic>Isotope geochemistry. Geochronology</topic><topic>Marine and continental quaternary</topic><topic>Monte Carlo method</topic><topic>Paleobotany</topic><topic>Paleoclimatology</topic><topic>Paleontology</topic><topic>spectral analysis</topic><topic>Surficial geology</topic><topic>time series analysis</topic><topic>Tree growth</topic><topic>Tunisia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meko, D.M.</creatorcontrib><creatorcontrib>Touchan, R.</creatorcontrib><creatorcontrib>Anchukaitis, K.J.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Computers &amp; geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meko, D.M.</au><au>Touchan, R.</au><au>Anchukaitis, K.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seascorr: A MATLAB program for identifying the seasonal climate signal in an annual tree-ring time series</atitle><jtitle>Computers &amp; geosciences</jtitle><date>2011-09-01</date><risdate>2011</risdate><volume>37</volume><issue>9</issue><spage>1234</spage><epage>1241</epage><pages>1234-1241</pages><issn>0098-3004</issn><eissn>1873-7803</eissn><abstract>A common research task in dendroclimatology is identification of the monthly or seasonal climate signal in an annual time series of indices of ring width. A MATLAB function, seascorr, is introduced as a general statistical tool for identifying the signal. Monthly time series of primary and secondary climate variables are input to the function along with a tree-ring time series and specifications for seasonal groupings. The relationship of the tree-ring series with the seasonalized primary climate variable is summarized by simple correlations. The relationship with the secondary climate variable is summarized by partial correlations, controlling for the influence of the primary climate variable. Confidence intervals on sample correlations and partial correlations are estimated with the help of Monte Carlo simulation of the tree-ring series by exact simulation, which preserves the spectral properties of the observed series. Results are summarized in graphical and statistical output. The function is illustrated with examples from Tunisia and Russia.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cageo.2011.01.013</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0098-3004
ispartof Computers & geosciences, 2011-09, Vol.37 (9), p.1234-1241
issn 0098-3004
1873-7803
language eng
recordid cdi_proquest_miscellaneous_888115711
source Access via ScienceDirect (Elsevier)
subjects climatic factors
computers
confidence interval
Dendroclimatology
Earth sciences
Earth, ocean, space
Exact sciences and technology
Exact simulation
Geochronology
growth rings
Isotope geochemistry. Geochronology
Marine and continental quaternary
Monte Carlo method
Paleobotany
Paleoclimatology
Paleontology
spectral analysis
Surficial geology
time series analysis
Tree growth
Tunisia
title Seascorr: A MATLAB program for identifying the seasonal climate signal in an annual tree-ring time series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T23%3A49%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seascorr:%20A%20MATLAB%20program%20for%20identifying%20the%20seasonal%20climate%20signal%20in%20an%20annual%20tree-ring%20time%20series&rft.jtitle=Computers%20&%20geosciences&rft.au=Meko,%20D.M.&rft.date=2011-09-01&rft.volume=37&rft.issue=9&rft.spage=1234&rft.epage=1241&rft.pages=1234-1241&rft.issn=0098-3004&rft.eissn=1873-7803&rft_id=info:doi/10.1016/j.cageo.2011.01.013&rft_dat=%3Cproquest_cross%3E888115711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=888115711&rft_id=info:pmid/&rft_els_id=S009830041100104X&rfr_iscdi=true