A thermodynamic analysis of electron production during syngas fermentation
► The Gibbs free energy of reaction for electron production from CO is thermodynamically favorable for typical conditions. ► The Gibbs free energy of reaction for electron production from H2 can be thermodynamically favorable or unfavorable. ► Electron production from CO is always more thermodynamic...
Gespeichert in:
Veröffentlicht in: | Bioresource technology 2011-09, Vol.102 (17), p.8071-8076 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8076 |
---|---|
container_issue | 17 |
container_start_page | 8071 |
container_title | Bioresource technology |
container_volume | 102 |
creator | Hu, Peng Bowen, Spencer H. Lewis, Randy S. |
description | ► The Gibbs free energy of reaction for electron production from CO is thermodynamically favorable for typical conditions. ► The Gibbs free energy of reaction for electron production from H2 can be thermodynamically favorable or unfavorable. ► Electron production from CO is always more thermodynamically favorable compared to electron production from H2. ► It is unlikely that H2 can be utilized in favor of CO for electron production when both species are present. ► CO conversion efficiency will likely be sacrificed during syngas fermentation.
Currently, syngas fermentation is being developed as one option towards the production of biofuels from biomass. This process utilizes the acetyl-CoA (Wood–Ljungdahl) metabolic pathway. Along the pathway, CO and CO2 are used as carbon sources. Electrons required for the metabolic process are generated from H2 and/or from CO. This study showed that electron production from CO is always more thermodynamically favorable compared to electron production from H2 and this finding is independent of pH, ionic strength, gas partial pressure, and electron carrier pairs. Additionally, electron production from H2 may be thermodynamically unfavorable in some experimental conditions. Thus, it is unlikely that H2 can be utilized for electron production in favor of CO when both species are present. Therefore, CO conversion efficiency will be sacrificed during syngas fermentation since some of the CO will provide electrons at the expense of product and cell mass formation. |
doi_str_mv | 10.1016/j.biortech.2011.05.080 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_888115679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852411007875</els_id><sourcerecordid>880716647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-5d793b0ea02fdf9db6496c2370f2857eada7c29953cec726b1ebfcc626d0d69a3</originalsourceid><addsrcrecordid>eNqFkUtv1DAURi1ERYfCXyjZINgkXDuJHzuqikerSiyga8uxr6ce5VHspNL8e5zOFHZ0dS35fPd-0iHknEJFgfJPu6oLU5zR3lUMKK2grUDCC7KhUtQlU4K_JBtQHErZsuaUvE5pBwA1FewVOWV5NLVsN-T6opjvMA6T249mCLYwo-n3KaRi8gX2aOc4jcV9nNxi55Cfbolh3BZpP25NKnyO4jib9esNOfGmT_j2OM_I7dcvvy6_lzc_vl1dXtyUtpF8LlsnVN0BGmDeeeU63ihuWS3AM9kKNM4Iy5Rqa4tWMN5R7Ly1nHEHjitTn5EPh7251e8F06yHkCz2vRlxWpKWUlLa8nzleRIE5bwRmfz4X5JyQXNFVq9L-QG1cUopotf3MQwm7jUFvbrRO_3kRq9uNLQ6u8nB8-ONpRvQ_Y09ycjA-yNgkjW9j2a0If3jmqaR6rHsuwPnzaTNNmbm9me-1ABQqSisHT8fCMweHgJGnWzA0aILMSvVbgrPtf0DQy66Ig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671237239</pqid></control><display><type>article</type><title>A thermodynamic analysis of electron production during syngas fermentation</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Hu, Peng ; Bowen, Spencer H. ; Lewis, Randy S.</creator><creatorcontrib>Hu, Peng ; Bowen, Spencer H. ; Lewis, Randy S.</creatorcontrib><description>► The Gibbs free energy of reaction for electron production from CO is thermodynamically favorable for typical conditions. ► The Gibbs free energy of reaction for electron production from H2 can be thermodynamically favorable or unfavorable. ► Electron production from CO is always more thermodynamically favorable compared to electron production from H2. ► It is unlikely that H2 can be utilized in favor of CO for electron production when both species are present. ► CO conversion efficiency will likely be sacrificed during syngas fermentation.
Currently, syngas fermentation is being developed as one option towards the production of biofuels from biomass. This process utilizes the acetyl-CoA (Wood–Ljungdahl) metabolic pathway. Along the pathway, CO and CO2 are used as carbon sources. Electrons required for the metabolic process are generated from H2 and/or from CO. This study showed that electron production from CO is always more thermodynamically favorable compared to electron production from H2 and this finding is independent of pH, ionic strength, gas partial pressure, and electron carrier pairs. Additionally, electron production from H2 may be thermodynamically unfavorable in some experimental conditions. Thus, it is unlikely that H2 can be utilized for electron production in favor of CO when both species are present. Therefore, CO conversion efficiency will be sacrificed during syngas fermentation since some of the CO will provide electrons at the expense of product and cell mass formation.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2011.05.080</identifier><identifier>PMID: 21724385</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>biochemical pathways ; Biofuel production ; Biofuels ; Biological and medical sciences ; Biotechnology ; Carbon ; Carbon dioxide ; Carbon monoxide ; Conversion ; Electron production ; Electrons ; Energy ; Expenses ; Fermentation ; Fundamental and applied biological sciences. Psychology ; Gases ; Industrial applications and implications. Economical aspects ; ionic strength ; Methods. Procedures. Technologies ; Microbial engineering. Fermentation and microbial culture technology ; Partial pressure ; Pathways ; Syngas ; Thermodynamics</subject><ispartof>Bioresource technology, 2011-09, Vol.102 (17), p.8071-8076</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-5d793b0ea02fdf9db6496c2370f2857eada7c29953cec726b1ebfcc626d0d69a3</citedby><cites>FETCH-LOGICAL-c486t-5d793b0ea02fdf9db6496c2370f2857eada7c29953cec726b1ebfcc626d0d69a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biortech.2011.05.080$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24448947$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21724385$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Peng</creatorcontrib><creatorcontrib>Bowen, Spencer H.</creatorcontrib><creatorcontrib>Lewis, Randy S.</creatorcontrib><title>A thermodynamic analysis of electron production during syngas fermentation</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>► The Gibbs free energy of reaction for electron production from CO is thermodynamically favorable for typical conditions. ► The Gibbs free energy of reaction for electron production from H2 can be thermodynamically favorable or unfavorable. ► Electron production from CO is always more thermodynamically favorable compared to electron production from H2. ► It is unlikely that H2 can be utilized in favor of CO for electron production when both species are present. ► CO conversion efficiency will likely be sacrificed during syngas fermentation.
Currently, syngas fermentation is being developed as one option towards the production of biofuels from biomass. This process utilizes the acetyl-CoA (Wood–Ljungdahl) metabolic pathway. Along the pathway, CO and CO2 are used as carbon sources. Electrons required for the metabolic process are generated from H2 and/or from CO. This study showed that electron production from CO is always more thermodynamically favorable compared to electron production from H2 and this finding is independent of pH, ionic strength, gas partial pressure, and electron carrier pairs. Additionally, electron production from H2 may be thermodynamically unfavorable in some experimental conditions. Thus, it is unlikely that H2 can be utilized for electron production in favor of CO when both species are present. Therefore, CO conversion efficiency will be sacrificed during syngas fermentation since some of the CO will provide electrons at the expense of product and cell mass formation.</description><subject>biochemical pathways</subject><subject>Biofuel production</subject><subject>Biofuels</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Conversion</subject><subject>Electron production</subject><subject>Electrons</subject><subject>Energy</subject><subject>Expenses</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gases</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>ionic strength</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>Partial pressure</subject><subject>Pathways</subject><subject>Syngas</subject><subject>Thermodynamics</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAURi1ERYfCXyjZINgkXDuJHzuqikerSiyga8uxr6ce5VHspNL8e5zOFHZ0dS35fPd-0iHknEJFgfJPu6oLU5zR3lUMKK2grUDCC7KhUtQlU4K_JBtQHErZsuaUvE5pBwA1FewVOWV5NLVsN-T6opjvMA6T249mCLYwo-n3KaRi8gX2aOc4jcV9nNxi55Cfbolh3BZpP25NKnyO4jib9esNOfGmT_j2OM_I7dcvvy6_lzc_vl1dXtyUtpF8LlsnVN0BGmDeeeU63ihuWS3AM9kKNM4Iy5Rqa4tWMN5R7Ly1nHEHjitTn5EPh7251e8F06yHkCz2vRlxWpKWUlLa8nzleRIE5bwRmfz4X5JyQXNFVq9L-QG1cUopotf3MQwm7jUFvbrRO_3kRq9uNLQ6u8nB8-ONpRvQ_Y09ycjA-yNgkjW9j2a0If3jmqaR6rHsuwPnzaTNNmbm9me-1ABQqSisHT8fCMweHgJGnWzA0aILMSvVbgrPtf0DQy66Ig</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Hu, Peng</creator><creator>Bowen, Spencer H.</creator><creator>Lewis, Randy S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20110901</creationdate><title>A thermodynamic analysis of electron production during syngas fermentation</title><author>Hu, Peng ; Bowen, Spencer H. ; Lewis, Randy S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-5d793b0ea02fdf9db6496c2370f2857eada7c29953cec726b1ebfcc626d0d69a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>biochemical pathways</topic><topic>Biofuel production</topic><topic>Biofuels</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Conversion</topic><topic>Electron production</topic><topic>Electrons</topic><topic>Energy</topic><topic>Expenses</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gases</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>ionic strength</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>Partial pressure</topic><topic>Pathways</topic><topic>Syngas</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Peng</creatorcontrib><creatorcontrib>Bowen, Spencer H.</creatorcontrib><creatorcontrib>Lewis, Randy S.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Peng</au><au>Bowen, Spencer H.</au><au>Lewis, Randy S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A thermodynamic analysis of electron production during syngas fermentation</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2011-09-01</date><risdate>2011</risdate><volume>102</volume><issue>17</issue><spage>8071</spage><epage>8076</epage><pages>8071-8076</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>► The Gibbs free energy of reaction for electron production from CO is thermodynamically favorable for typical conditions. ► The Gibbs free energy of reaction for electron production from H2 can be thermodynamically favorable or unfavorable. ► Electron production from CO is always more thermodynamically favorable compared to electron production from H2. ► It is unlikely that H2 can be utilized in favor of CO for electron production when both species are present. ► CO conversion efficiency will likely be sacrificed during syngas fermentation.
Currently, syngas fermentation is being developed as one option towards the production of biofuels from biomass. This process utilizes the acetyl-CoA (Wood–Ljungdahl) metabolic pathway. Along the pathway, CO and CO2 are used as carbon sources. Electrons required for the metabolic process are generated from H2 and/or from CO. This study showed that electron production from CO is always more thermodynamically favorable compared to electron production from H2 and this finding is independent of pH, ionic strength, gas partial pressure, and electron carrier pairs. Additionally, electron production from H2 may be thermodynamically unfavorable in some experimental conditions. Thus, it is unlikely that H2 can be utilized for electron production in favor of CO when both species are present. Therefore, CO conversion efficiency will be sacrificed during syngas fermentation since some of the CO will provide electrons at the expense of product and cell mass formation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>21724385</pmid><doi>10.1016/j.biortech.2011.05.080</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-8524 |
ispartof | Bioresource technology, 2011-09, Vol.102 (17), p.8071-8076 |
issn | 0960-8524 1873-2976 |
language | eng |
recordid | cdi_proquest_miscellaneous_888115679 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | biochemical pathways Biofuel production Biofuels Biological and medical sciences Biotechnology Carbon Carbon dioxide Carbon monoxide Conversion Electron production Electrons Energy Expenses Fermentation Fundamental and applied biological sciences. Psychology Gases Industrial applications and implications. Economical aspects ionic strength Methods. Procedures. Technologies Microbial engineering. Fermentation and microbial culture technology Partial pressure Pathways Syngas Thermodynamics |
title | A thermodynamic analysis of electron production during syngas fermentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A00%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20thermodynamic%20analysis%20of%20electron%20production%20during%20syngas%20fermentation&rft.jtitle=Bioresource%20technology&rft.au=Hu,%20Peng&rft.date=2011-09-01&rft.volume=102&rft.issue=17&rft.spage=8071&rft.epage=8076&rft.pages=8071-8076&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2011.05.080&rft_dat=%3Cproquest_cross%3E880716647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671237239&rft_id=info:pmid/21724385&rft_els_id=S0960852411007875&rfr_iscdi=true |