A thermodynamic analysis of electron production during syngas fermentation

► The Gibbs free energy of reaction for electron production from CO is thermodynamically favorable for typical conditions. ► The Gibbs free energy of reaction for electron production from H2 can be thermodynamically favorable or unfavorable. ► Electron production from CO is always more thermodynamic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2011-09, Vol.102 (17), p.8071-8076
Hauptverfasser: Hu, Peng, Bowen, Spencer H., Lewis, Randy S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8076
container_issue 17
container_start_page 8071
container_title Bioresource technology
container_volume 102
creator Hu, Peng
Bowen, Spencer H.
Lewis, Randy S.
description ► The Gibbs free energy of reaction for electron production from CO is thermodynamically favorable for typical conditions. ► The Gibbs free energy of reaction for electron production from H2 can be thermodynamically favorable or unfavorable. ► Electron production from CO is always more thermodynamically favorable compared to electron production from H2. ► It is unlikely that H2 can be utilized in favor of CO for electron production when both species are present. ► CO conversion efficiency will likely be sacrificed during syngas fermentation. Currently, syngas fermentation is being developed as one option towards the production of biofuels from biomass. This process utilizes the acetyl-CoA (Wood–Ljungdahl) metabolic pathway. Along the pathway, CO and CO2 are used as carbon sources. Electrons required for the metabolic process are generated from H2 and/or from CO. This study showed that electron production from CO is always more thermodynamically favorable compared to electron production from H2 and this finding is independent of pH, ionic strength, gas partial pressure, and electron carrier pairs. Additionally, electron production from H2 may be thermodynamically unfavorable in some experimental conditions. Thus, it is unlikely that H2 can be utilized for electron production in favor of CO when both species are present. Therefore, CO conversion efficiency will be sacrificed during syngas fermentation since some of the CO will provide electrons at the expense of product and cell mass formation.
doi_str_mv 10.1016/j.biortech.2011.05.080
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_888115679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852411007875</els_id><sourcerecordid>880716647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-5d793b0ea02fdf9db6496c2370f2857eada7c29953cec726b1ebfcc626d0d69a3</originalsourceid><addsrcrecordid>eNqFkUtv1DAURi1ERYfCXyjZINgkXDuJHzuqikerSiyga8uxr6ce5VHspNL8e5zOFHZ0dS35fPd-0iHknEJFgfJPu6oLU5zR3lUMKK2grUDCC7KhUtQlU4K_JBtQHErZsuaUvE5pBwA1FewVOWV5NLVsN-T6opjvMA6T249mCLYwo-n3KaRi8gX2aOc4jcV9nNxi55Cfbolh3BZpP25NKnyO4jib9esNOfGmT_j2OM_I7dcvvy6_lzc_vl1dXtyUtpF8LlsnVN0BGmDeeeU63ihuWS3AM9kKNM4Iy5Rqa4tWMN5R7Ly1nHEHjitTn5EPh7251e8F06yHkCz2vRlxWpKWUlLa8nzleRIE5bwRmfz4X5JyQXNFVq9L-QG1cUopotf3MQwm7jUFvbrRO_3kRq9uNLQ6u8nB8-ONpRvQ_Y09ycjA-yNgkjW9j2a0If3jmqaR6rHsuwPnzaTNNmbm9me-1ABQqSisHT8fCMweHgJGnWzA0aILMSvVbgrPtf0DQy66Ig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671237239</pqid></control><display><type>article</type><title>A thermodynamic analysis of electron production during syngas fermentation</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Hu, Peng ; Bowen, Spencer H. ; Lewis, Randy S.</creator><creatorcontrib>Hu, Peng ; Bowen, Spencer H. ; Lewis, Randy S.</creatorcontrib><description>► The Gibbs free energy of reaction for electron production from CO is thermodynamically favorable for typical conditions. ► The Gibbs free energy of reaction for electron production from H2 can be thermodynamically favorable or unfavorable. ► Electron production from CO is always more thermodynamically favorable compared to electron production from H2. ► It is unlikely that H2 can be utilized in favor of CO for electron production when both species are present. ► CO conversion efficiency will likely be sacrificed during syngas fermentation. Currently, syngas fermentation is being developed as one option towards the production of biofuels from biomass. This process utilizes the acetyl-CoA (Wood–Ljungdahl) metabolic pathway. Along the pathway, CO and CO2 are used as carbon sources. Electrons required for the metabolic process are generated from H2 and/or from CO. This study showed that electron production from CO is always more thermodynamically favorable compared to electron production from H2 and this finding is independent of pH, ionic strength, gas partial pressure, and electron carrier pairs. Additionally, electron production from H2 may be thermodynamically unfavorable in some experimental conditions. Thus, it is unlikely that H2 can be utilized for electron production in favor of CO when both species are present. Therefore, CO conversion efficiency will be sacrificed during syngas fermentation since some of the CO will provide electrons at the expense of product and cell mass formation.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2011.05.080</identifier><identifier>PMID: 21724385</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>biochemical pathways ; Biofuel production ; Biofuels ; Biological and medical sciences ; Biotechnology ; Carbon ; Carbon dioxide ; Carbon monoxide ; Conversion ; Electron production ; Electrons ; Energy ; Expenses ; Fermentation ; Fundamental and applied biological sciences. Psychology ; Gases ; Industrial applications and implications. Economical aspects ; ionic strength ; Methods. Procedures. Technologies ; Microbial engineering. Fermentation and microbial culture technology ; Partial pressure ; Pathways ; Syngas ; Thermodynamics</subject><ispartof>Bioresource technology, 2011-09, Vol.102 (17), p.8071-8076</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-5d793b0ea02fdf9db6496c2370f2857eada7c29953cec726b1ebfcc626d0d69a3</citedby><cites>FETCH-LOGICAL-c486t-5d793b0ea02fdf9db6496c2370f2857eada7c29953cec726b1ebfcc626d0d69a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biortech.2011.05.080$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24448947$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21724385$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Peng</creatorcontrib><creatorcontrib>Bowen, Spencer H.</creatorcontrib><creatorcontrib>Lewis, Randy S.</creatorcontrib><title>A thermodynamic analysis of electron production during syngas fermentation</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>► The Gibbs free energy of reaction for electron production from CO is thermodynamically favorable for typical conditions. ► The Gibbs free energy of reaction for electron production from H2 can be thermodynamically favorable or unfavorable. ► Electron production from CO is always more thermodynamically favorable compared to electron production from H2. ► It is unlikely that H2 can be utilized in favor of CO for electron production when both species are present. ► CO conversion efficiency will likely be sacrificed during syngas fermentation. Currently, syngas fermentation is being developed as one option towards the production of biofuels from biomass. This process utilizes the acetyl-CoA (Wood–Ljungdahl) metabolic pathway. Along the pathway, CO and CO2 are used as carbon sources. Electrons required for the metabolic process are generated from H2 and/or from CO. This study showed that electron production from CO is always more thermodynamically favorable compared to electron production from H2 and this finding is independent of pH, ionic strength, gas partial pressure, and electron carrier pairs. Additionally, electron production from H2 may be thermodynamically unfavorable in some experimental conditions. Thus, it is unlikely that H2 can be utilized for electron production in favor of CO when both species are present. Therefore, CO conversion efficiency will be sacrificed during syngas fermentation since some of the CO will provide electrons at the expense of product and cell mass formation.</description><subject>biochemical pathways</subject><subject>Biofuel production</subject><subject>Biofuels</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Conversion</subject><subject>Electron production</subject><subject>Electrons</subject><subject>Energy</subject><subject>Expenses</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gases</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>ionic strength</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>Partial pressure</subject><subject>Pathways</subject><subject>Syngas</subject><subject>Thermodynamics</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAURi1ERYfCXyjZINgkXDuJHzuqikerSiyga8uxr6ce5VHspNL8e5zOFHZ0dS35fPd-0iHknEJFgfJPu6oLU5zR3lUMKK2grUDCC7KhUtQlU4K_JBtQHErZsuaUvE5pBwA1FewVOWV5NLVsN-T6opjvMA6T249mCLYwo-n3KaRi8gX2aOc4jcV9nNxi55Cfbolh3BZpP25NKnyO4jib9esNOfGmT_j2OM_I7dcvvy6_lzc_vl1dXtyUtpF8LlsnVN0BGmDeeeU63ihuWS3AM9kKNM4Iy5Rqa4tWMN5R7Ly1nHEHjitTn5EPh7251e8F06yHkCz2vRlxWpKWUlLa8nzleRIE5bwRmfz4X5JyQXNFVq9L-QG1cUopotf3MQwm7jUFvbrRO_3kRq9uNLQ6u8nB8-ONpRvQ_Y09ycjA-yNgkjW9j2a0If3jmqaR6rHsuwPnzaTNNmbm9me-1ABQqSisHT8fCMweHgJGnWzA0aILMSvVbgrPtf0DQy66Ig</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Hu, Peng</creator><creator>Bowen, Spencer H.</creator><creator>Lewis, Randy S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20110901</creationdate><title>A thermodynamic analysis of electron production during syngas fermentation</title><author>Hu, Peng ; Bowen, Spencer H. ; Lewis, Randy S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-5d793b0ea02fdf9db6496c2370f2857eada7c29953cec726b1ebfcc626d0d69a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>biochemical pathways</topic><topic>Biofuel production</topic><topic>Biofuels</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Conversion</topic><topic>Electron production</topic><topic>Electrons</topic><topic>Energy</topic><topic>Expenses</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gases</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>ionic strength</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>Partial pressure</topic><topic>Pathways</topic><topic>Syngas</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Peng</creatorcontrib><creatorcontrib>Bowen, Spencer H.</creatorcontrib><creatorcontrib>Lewis, Randy S.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Peng</au><au>Bowen, Spencer H.</au><au>Lewis, Randy S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A thermodynamic analysis of electron production during syngas fermentation</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2011-09-01</date><risdate>2011</risdate><volume>102</volume><issue>17</issue><spage>8071</spage><epage>8076</epage><pages>8071-8076</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>► The Gibbs free energy of reaction for electron production from CO is thermodynamically favorable for typical conditions. ► The Gibbs free energy of reaction for electron production from H2 can be thermodynamically favorable or unfavorable. ► Electron production from CO is always more thermodynamically favorable compared to electron production from H2. ► It is unlikely that H2 can be utilized in favor of CO for electron production when both species are present. ► CO conversion efficiency will likely be sacrificed during syngas fermentation. Currently, syngas fermentation is being developed as one option towards the production of biofuels from biomass. This process utilizes the acetyl-CoA (Wood–Ljungdahl) metabolic pathway. Along the pathway, CO and CO2 are used as carbon sources. Electrons required for the metabolic process are generated from H2 and/or from CO. This study showed that electron production from CO is always more thermodynamically favorable compared to electron production from H2 and this finding is independent of pH, ionic strength, gas partial pressure, and electron carrier pairs. Additionally, electron production from H2 may be thermodynamically unfavorable in some experimental conditions. Thus, it is unlikely that H2 can be utilized for electron production in favor of CO when both species are present. Therefore, CO conversion efficiency will be sacrificed during syngas fermentation since some of the CO will provide electrons at the expense of product and cell mass formation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>21724385</pmid><doi>10.1016/j.biortech.2011.05.080</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2011-09, Vol.102 (17), p.8071-8076
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_888115679
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects biochemical pathways
Biofuel production
Biofuels
Biological and medical sciences
Biotechnology
Carbon
Carbon dioxide
Carbon monoxide
Conversion
Electron production
Electrons
Energy
Expenses
Fermentation
Fundamental and applied biological sciences. Psychology
Gases
Industrial applications and implications. Economical aspects
ionic strength
Methods. Procedures. Technologies
Microbial engineering. Fermentation and microbial culture technology
Partial pressure
Pathways
Syngas
Thermodynamics
title A thermodynamic analysis of electron production during syngas fermentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A00%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20thermodynamic%20analysis%20of%20electron%20production%20during%20syngas%20fermentation&rft.jtitle=Bioresource%20technology&rft.au=Hu,%20Peng&rft.date=2011-09-01&rft.volume=102&rft.issue=17&rft.spage=8071&rft.epage=8076&rft.pages=8071-8076&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2011.05.080&rft_dat=%3Cproquest_cross%3E880716647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671237239&rft_id=info:pmid/21724385&rft_els_id=S0960852411007875&rfr_iscdi=true