A method for using CPV modules as temperature sensors and its application to rating procedures

A method is presented herein that allows the determination of the average temperature of solar cells in a concentrator photovoltaic (CPV) module. The module is measured systematically in a sun simulator while the average module temperature and the irradiation are varied. Two different approaches are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2011-10, Vol.95 (10), p.2734-2744
Hauptverfasser: Peharz, Gerhard, Ferrer Rodríguez, Juan P., Siefer, Gerald, Bett, Andreas W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2744
container_issue 10
container_start_page 2734
container_title Solar energy materials and solar cells
container_volume 95
creator Peharz, Gerhard
Ferrer Rodríguez, Juan P.
Siefer, Gerald
Bett, Andreas W.
description A method is presented herein that allows the determination of the average temperature of solar cells in a concentrator photovoltaic (CPV) module. The module is measured systematically in a sun simulator while the average module temperature and the irradiation are varied. Two different approaches are discussed to heat a CPV module in a sun simulator. From the measurements, a function is derived that allows the derivation of the average solar cell temperature when the I– V curve of the CPV module is measured. Consequently, the module itself can be used as a temperature sensor. Outdoor I– V measurements of different CPV modules are then presented. Their temperatures are calculated by applying the newly developed method. A multi-linear regression is conducted on the data measured outdoors. In particular, the modules’ maximum powers are correlated to direct normal irradiation, the solar spectrum and the average solar cell temperature. The impact of temperature on the module’s maximum power is shown to be significantly smaller than the impact of the solar spectrum. Finally, the maximum power values for the modules are re-calculated for two different rating conditions. [Display omitted] ► We present a method for using a CPV module as its own thermometer. ► At a sun simulator irradiation and module temperature are varied systematically. ► Outdoors average cell temperatures are derived by measuring module I-V curves. ► A outdoor power rating of CPV modules is conducted. ► Indoor and outdoor measurements of CPV modules are compared.
doi_str_mv 10.1016/j.solmat.2011.03.030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_888114649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024811001838</els_id><sourcerecordid>1777135618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-618793b13a56363ee2be9c844e5d535cbedb71c5d42ee2d4cb0de9cb79240e883</originalsourceid><addsrcrecordid>eNp9kE-LFDEQxYMoOK5-Aw-5iF56Nv-6O30RlmHVhQU9qEdDOqnRDN2dNpUW_PbWMIvHhQcFVb-qVzzGXkuxl0J216c95mn2da-ElHuhSeIJ20nbD43Wg33KdmJQfSOUsc_ZC8STEEJ12uzYjxs-Q_2VIz_mwjdMy09--PKdzzluEyD3yCvMKxRftwIcYcFcqL1EnirVdZ1S8DXlhdfMiTofWEsOEInHl-zZ0U8Irx7qFfv24fbr4VNz__nj3eHmvgnGqNp051f1KLVvO91pADXCEKwx0MZWt2GEOPYytNEomkUTRhEJGPtBGQHW6iv29nKXrH9vgNXNCQNMk18gb-istVKazgxEvnuUlH3fS93SR4SaCxpKRixwdGtJsy9_nRTuHLw7uUvw7hy8E5okaO3Ng4PH4Kdj8UtI-H9XGSNJLXHvLxxQMH8SFIchwULJpQKhupjT40b_AKT8m60</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777135618</pqid></control><display><type>article</type><title>A method for using CPV modules as temperature sensors and its application to rating procedures</title><source>Elsevier ScienceDirect Journals</source><creator>Peharz, Gerhard ; Ferrer Rodríguez, Juan P. ; Siefer, Gerald ; Bett, Andreas W.</creator><creatorcontrib>Peharz, Gerhard ; Ferrer Rodríguez, Juan P. ; Siefer, Gerald ; Bett, Andreas W.</creatorcontrib><description>A method is presented herein that allows the determination of the average temperature of solar cells in a concentrator photovoltaic (CPV) module. The module is measured systematically in a sun simulator while the average module temperature and the irradiation are varied. Two different approaches are discussed to heat a CPV module in a sun simulator. From the measurements, a function is derived that allows the derivation of the average solar cell temperature when the I– V curve of the CPV module is measured. Consequently, the module itself can be used as a temperature sensor. Outdoor I– V measurements of different CPV modules are then presented. Their temperatures are calculated by applying the newly developed method. A multi-linear regression is conducted on the data measured outdoors. In particular, the modules’ maximum powers are correlated to direct normal irradiation, the solar spectrum and the average solar cell temperature. The impact of temperature on the module’s maximum power is shown to be significantly smaller than the impact of the solar spectrum. Finally, the maximum power values for the modules are re-calculated for two different rating conditions. [Display omitted] ► We present a method for using a CPV module as its own thermometer. ► At a sun simulator irradiation and module temperature are varied systematically. ► Outdoors average cell temperatures are derived by measuring module I-V curves. ► A outdoor power rating of CPV modules is conducted. ► Indoor and outdoor measurements of CPV modules are compared.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2011.03.030</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Characterization ; Concentrator photovoltaics ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Energy ; Exact sciences and technology ; Maximum power ; Modules ; Natural energy ; Outdoor ; Photoelectric conversion ; Photovoltaic cells ; Photovoltaic conversion ; Power rating ; Simulation ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar collectors ; Solar energy ; Solar thermal conversion ; Sun ; Temperature sensors</subject><ispartof>Solar energy materials and solar cells, 2011-10, Vol.95 (10), p.2734-2744</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-618793b13a56363ee2be9c844e5d535cbedb71c5d42ee2d4cb0de9cb79240e883</citedby><cites>FETCH-LOGICAL-c442t-618793b13a56363ee2be9c844e5d535cbedb71c5d42ee2d4cb0de9cb79240e883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927024811001838$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24414415$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Peharz, Gerhard</creatorcontrib><creatorcontrib>Ferrer Rodríguez, Juan P.</creatorcontrib><creatorcontrib>Siefer, Gerald</creatorcontrib><creatorcontrib>Bett, Andreas W.</creatorcontrib><title>A method for using CPV modules as temperature sensors and its application to rating procedures</title><title>Solar energy materials and solar cells</title><description>A method is presented herein that allows the determination of the average temperature of solar cells in a concentrator photovoltaic (CPV) module. The module is measured systematically in a sun simulator while the average module temperature and the irradiation are varied. Two different approaches are discussed to heat a CPV module in a sun simulator. From the measurements, a function is derived that allows the derivation of the average solar cell temperature when the I– V curve of the CPV module is measured. Consequently, the module itself can be used as a temperature sensor. Outdoor I– V measurements of different CPV modules are then presented. Their temperatures are calculated by applying the newly developed method. A multi-linear regression is conducted on the data measured outdoors. In particular, the modules’ maximum powers are correlated to direct normal irradiation, the solar spectrum and the average solar cell temperature. The impact of temperature on the module’s maximum power is shown to be significantly smaller than the impact of the solar spectrum. Finally, the maximum power values for the modules are re-calculated for two different rating conditions. [Display omitted] ► We present a method for using a CPV module as its own thermometer. ► At a sun simulator irradiation and module temperature are varied systematically. ► Outdoors average cell temperatures are derived by measuring module I-V curves. ► A outdoor power rating of CPV modules is conducted. ► Indoor and outdoor measurements of CPV modules are compared.</description><subject>Applied sciences</subject><subject>Characterization</subject><subject>Concentrator photovoltaics</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Maximum power</subject><subject>Modules</subject><subject>Natural energy</subject><subject>Outdoor</subject><subject>Photoelectric conversion</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Power rating</subject><subject>Simulation</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar collectors</subject><subject>Solar energy</subject><subject>Solar thermal conversion</subject><subject>Sun</subject><subject>Temperature sensors</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE-LFDEQxYMoOK5-Aw-5iF56Nv-6O30RlmHVhQU9qEdDOqnRDN2dNpUW_PbWMIvHhQcFVb-qVzzGXkuxl0J216c95mn2da-ElHuhSeIJ20nbD43Wg33KdmJQfSOUsc_ZC8STEEJ12uzYjxs-Q_2VIz_mwjdMy09--PKdzzluEyD3yCvMKxRftwIcYcFcqL1EnirVdZ1S8DXlhdfMiTofWEsOEInHl-zZ0U8Irx7qFfv24fbr4VNz__nj3eHmvgnGqNp051f1KLVvO91pADXCEKwx0MZWt2GEOPYytNEomkUTRhEJGPtBGQHW6iv29nKXrH9vgNXNCQNMk18gb-istVKazgxEvnuUlH3fS93SR4SaCxpKRixwdGtJsy9_nRTuHLw7uUvw7hy8E5okaO3Ng4PH4Kdj8UtI-H9XGSNJLXHvLxxQMH8SFIchwULJpQKhupjT40b_AKT8m60</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Peharz, Gerhard</creator><creator>Ferrer Rodríguez, Juan P.</creator><creator>Siefer, Gerald</creator><creator>Bett, Andreas W.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20111001</creationdate><title>A method for using CPV modules as temperature sensors and its application to rating procedures</title><author>Peharz, Gerhard ; Ferrer Rodríguez, Juan P. ; Siefer, Gerald ; Bett, Andreas W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-618793b13a56363ee2be9c844e5d535cbedb71c5d42ee2d4cb0de9cb79240e883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Characterization</topic><topic>Concentrator photovoltaics</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Maximum power</topic><topic>Modules</topic><topic>Natural energy</topic><topic>Outdoor</topic><topic>Photoelectric conversion</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Power rating</topic><topic>Simulation</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar collectors</topic><topic>Solar energy</topic><topic>Solar thermal conversion</topic><topic>Sun</topic><topic>Temperature sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peharz, Gerhard</creatorcontrib><creatorcontrib>Ferrer Rodríguez, Juan P.</creatorcontrib><creatorcontrib>Siefer, Gerald</creatorcontrib><creatorcontrib>Bett, Andreas W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peharz, Gerhard</au><au>Ferrer Rodríguez, Juan P.</au><au>Siefer, Gerald</au><au>Bett, Andreas W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method for using CPV modules as temperature sensors and its application to rating procedures</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>95</volume><issue>10</issue><spage>2734</spage><epage>2744</epage><pages>2734-2744</pages><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>A method is presented herein that allows the determination of the average temperature of solar cells in a concentrator photovoltaic (CPV) module. The module is measured systematically in a sun simulator while the average module temperature and the irradiation are varied. Two different approaches are discussed to heat a CPV module in a sun simulator. From the measurements, a function is derived that allows the derivation of the average solar cell temperature when the I– V curve of the CPV module is measured. Consequently, the module itself can be used as a temperature sensor. Outdoor I– V measurements of different CPV modules are then presented. Their temperatures are calculated by applying the newly developed method. A multi-linear regression is conducted on the data measured outdoors. In particular, the modules’ maximum powers are correlated to direct normal irradiation, the solar spectrum and the average solar cell temperature. The impact of temperature on the module’s maximum power is shown to be significantly smaller than the impact of the solar spectrum. Finally, the maximum power values for the modules are re-calculated for two different rating conditions. [Display omitted] ► We present a method for using a CPV module as its own thermometer. ► At a sun simulator irradiation and module temperature are varied systematically. ► Outdoors average cell temperatures are derived by measuring module I-V curves. ► A outdoor power rating of CPV modules is conducted. ► Indoor and outdoor measurements of CPV modules are compared.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2011.03.030</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2011-10, Vol.95 (10), p.2734-2744
issn 0927-0248
1879-3398
language eng
recordid cdi_proquest_miscellaneous_888114649
source Elsevier ScienceDirect Journals
subjects Applied sciences
Characterization
Concentrator photovoltaics
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Energy
Exact sciences and technology
Maximum power
Modules
Natural energy
Outdoor
Photoelectric conversion
Photovoltaic cells
Photovoltaic conversion
Power rating
Simulation
Solar cells
Solar cells. Photoelectrochemical cells
Solar collectors
Solar energy
Solar thermal conversion
Sun
Temperature sensors
title A method for using CPV modules as temperature sensors and its application to rating procedures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A51%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20for%20using%20CPV%20modules%20as%20temperature%20sensors%20and%20its%20application%20to%20rating%20procedures&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Peharz,%20Gerhard&rft.date=2011-10-01&rft.volume=95&rft.issue=10&rft.spage=2734&rft.epage=2744&rft.pages=2734-2744&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2011.03.030&rft_dat=%3Cproquest_cross%3E1777135618%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777135618&rft_id=info:pmid/&rft_els_id=S0927024811001838&rfr_iscdi=true