Mapping macrophytic vegetation in shallow lakes using the Compact Airborne Spectrographic Imager (CASI)
1. The ecological status of shallow lakes is highly dependent on the abundance and composition of macrophytes. However, large‐scale surveys are often confined to a small number of water bodies and undertaken only infrequently owing to logistical and financial constraints. 2. Data acquired by the Com...
Gespeichert in:
Veröffentlicht in: | Aquatic conservation 2010-11, Vol.20 (7), p.717-727 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 727 |
---|---|
container_issue | 7 |
container_start_page | 717 |
container_title | Aquatic conservation |
container_volume | 20 |
creator | Hunter, P.D Gilvear, D.J Tyler, A.N Willby, N.J Kelly, A |
description | 1. The ecological status of shallow lakes is highly dependent on the abundance and composition of macrophytes. However, large‐scale surveys are often confined to a small number of water bodies and undertaken only infrequently owing to logistical and financial constraints. 2. Data acquired by the Compact Airborne Spectrographic Imager‐2 (CASI‐2) was used to map the distribution of macrophytes in the Upper Thurne region of the Norfolk Broads, UK. Three different approaches to image classification were evaluated: (i) Euclidean minimum distance, (ii) Gaussian maximum likelihood, and (iii) support vector machines. 3. The results show macrophyte growth‐habits (i.e. submerged, floating‐leaved, partially‐emergent, emergent) and submerged species could be mapped with a maximum overall classification accuracy of 78% and 87%, respectively. The Gaussian maximum likelihood algorithm and support vector machine returned the highest classification accuracies in each instance. 4. This study suggests that remote sensing is a potentially powerful tool for large‐scale assessment of the cover and distribution of aquatic vegetation in clear water shallow lakes, particularly with respect to upscaling field survey data to a functionally relevant form, and supporting site‐condition monitoring under the European Union Habitats (92/43/EEC) and Water Framework (2000/60/EC) directives. Copyright © 2010 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/aqc.1144 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_888102920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>888102920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3894-b9410bf3f32f11eecc415b3b3ae51fb7d41d716d87a57c96d592c2c7bc059b7f3</originalsourceid><addsrcrecordid>eNp10EFv0zAYxvEIgcQYSHwDfEGMQ4ZfO47jYxXBVhhFqEw7Wm9cOzVL4sxOGf32pGq1Gyf78NNf9pNlb4FeAqXsEz6YS4CieJadAVUqp1KI54e7YLksgb_MXqX0m1KqSijPsvY7jqMfWtKjiWHc7idvyB_b2gknHwbiB5K22HXhkXR4bxPZpYOetpbUoR_RTGThYxPiYMl6tGaKoY04bufKssfWRnJRL9bLj6-zFw67ZN-czvPs9svnX_V1fvPjalkvbnLDK1XkjSqANo47zhyAtcYUIBrecLQCXCM3BWwklJtKopBGlRuhmGFGNoYK1UjHz7MPx-4Yw8POpkn3PhnbdTjYsEu6qiqgTDE6y4ujnP-dUrROj9H3GPcaqD5Mqecp9WHKmb4_RTEZ7FzEwfj05BnnpZQln11-dI--s_v_9vTiZ33qnrxPk_375DHe61JyKfTd6krffVuJr9eS69Xs3x29w6CxjfMbbteMAqegKBdS8n_7WZqE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>888102920</pqid></control><display><type>article</type><title>Mapping macrophytic vegetation in shallow lakes using the Compact Airborne Spectrographic Imager (CASI)</title><source>Access via Wiley Online Library</source><creator>Hunter, P.D ; Gilvear, D.J ; Tyler, A.N ; Willby, N.J ; Kelly, A</creator><creatorcontrib>Hunter, P.D ; Gilvear, D.J ; Tyler, A.N ; Willby, N.J ; Kelly, A</creatorcontrib><description>1. The ecological status of shallow lakes is highly dependent on the abundance and composition of macrophytes. However, large‐scale surveys are often confined to a small number of water bodies and undertaken only infrequently owing to logistical and financial constraints. 2. Data acquired by the Compact Airborne Spectrographic Imager‐2 (CASI‐2) was used to map the distribution of macrophytes in the Upper Thurne region of the Norfolk Broads, UK. Three different approaches to image classification were evaluated: (i) Euclidean minimum distance, (ii) Gaussian maximum likelihood, and (iii) support vector machines. 3. The results show macrophyte growth‐habits (i.e. submerged, floating‐leaved, partially‐emergent, emergent) and submerged species could be mapped with a maximum overall classification accuracy of 78% and 87%, respectively. The Gaussian maximum likelihood algorithm and support vector machine returned the highest classification accuracies in each instance. 4. This study suggests that remote sensing is a potentially powerful tool for large‐scale assessment of the cover and distribution of aquatic vegetation in clear water shallow lakes, particularly with respect to upscaling field survey data to a functionally relevant form, and supporting site‐condition monitoring under the European Union Habitats (92/43/EEC) and Water Framework (2000/60/EC) directives. Copyright © 2010 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1052-7613</identifier><identifier>ISSN: 1099-0755</identifier><identifier>EISSN: 1099-0755</identifier><identifier>DOI: 10.1002/aqc.1144</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Applied ecology ; aquatic plants ; Biological and medical sciences ; Conservation, protection and management of environment and wildlife ; Fresh water ecosystems ; Freshwater ; Fundamental and applied biological sciences. Psychology ; General aspects ; Habitats Directive ; lakes ; Marine ; remote sensing ; support vector machines ; Synecology ; Water Framework Directive</subject><ispartof>Aquatic conservation, 2010-11, Vol.20 (7), p.717-727</ispartof><rights>Copyright © 2010 John Wiley & Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3894-b9410bf3f32f11eecc415b3b3ae51fb7d41d716d87a57c96d592c2c7bc059b7f3</citedby><cites>FETCH-LOGICAL-c3894-b9410bf3f32f11eecc415b3b3ae51fb7d41d716d87a57c96d592c2c7bc059b7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faqc.1144$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faqc.1144$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,45583,45584</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23367763$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hunter, P.D</creatorcontrib><creatorcontrib>Gilvear, D.J</creatorcontrib><creatorcontrib>Tyler, A.N</creatorcontrib><creatorcontrib>Willby, N.J</creatorcontrib><creatorcontrib>Kelly, A</creatorcontrib><title>Mapping macrophytic vegetation in shallow lakes using the Compact Airborne Spectrographic Imager (CASI)</title><title>Aquatic conservation</title><addtitle>Aquatic Conserv: Mar. Freshw. Ecosyst</addtitle><description>1. The ecological status of shallow lakes is highly dependent on the abundance and composition of macrophytes. However, large‐scale surveys are often confined to a small number of water bodies and undertaken only infrequently owing to logistical and financial constraints. 2. Data acquired by the Compact Airborne Spectrographic Imager‐2 (CASI‐2) was used to map the distribution of macrophytes in the Upper Thurne region of the Norfolk Broads, UK. Three different approaches to image classification were evaluated: (i) Euclidean minimum distance, (ii) Gaussian maximum likelihood, and (iii) support vector machines. 3. The results show macrophyte growth‐habits (i.e. submerged, floating‐leaved, partially‐emergent, emergent) and submerged species could be mapped with a maximum overall classification accuracy of 78% and 87%, respectively. The Gaussian maximum likelihood algorithm and support vector machine returned the highest classification accuracies in each instance. 4. This study suggests that remote sensing is a potentially powerful tool for large‐scale assessment of the cover and distribution of aquatic vegetation in clear water shallow lakes, particularly with respect to upscaling field survey data to a functionally relevant form, and supporting site‐condition monitoring under the European Union Habitats (92/43/EEC) and Water Framework (2000/60/EC) directives. Copyright © 2010 John Wiley & Sons, Ltd.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Applied ecology</subject><subject>aquatic plants</subject><subject>Biological and medical sciences</subject><subject>Conservation, protection and management of environment and wildlife</subject><subject>Fresh water ecosystems</subject><subject>Freshwater</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Habitats Directive</subject><subject>lakes</subject><subject>Marine</subject><subject>remote sensing</subject><subject>support vector machines</subject><subject>Synecology</subject><subject>Water Framework Directive</subject><issn>1052-7613</issn><issn>1099-0755</issn><issn>1099-0755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp10EFv0zAYxvEIgcQYSHwDfEGMQ4ZfO47jYxXBVhhFqEw7Wm9cOzVL4sxOGf32pGq1Gyf78NNf9pNlb4FeAqXsEz6YS4CieJadAVUqp1KI54e7YLksgb_MXqX0m1KqSijPsvY7jqMfWtKjiWHc7idvyB_b2gknHwbiB5K22HXhkXR4bxPZpYOetpbUoR_RTGThYxPiYMl6tGaKoY04bufKssfWRnJRL9bLj6-zFw67ZN-czvPs9svnX_V1fvPjalkvbnLDK1XkjSqANo47zhyAtcYUIBrecLQCXCM3BWwklJtKopBGlRuhmGFGNoYK1UjHz7MPx-4Yw8POpkn3PhnbdTjYsEu6qiqgTDE6y4ujnP-dUrROj9H3GPcaqD5Mqecp9WHKmb4_RTEZ7FzEwfj05BnnpZQln11-dI--s_v_9vTiZ33qnrxPk_375DHe61JyKfTd6krffVuJr9eS69Xs3x29w6CxjfMbbteMAqegKBdS8n_7WZqE</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Hunter, P.D</creator><creator>Gilvear, D.J</creator><creator>Tyler, A.N</creator><creator>Willby, N.J</creator><creator>Kelly, A</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>201011</creationdate><title>Mapping macrophytic vegetation in shallow lakes using the Compact Airborne Spectrographic Imager (CASI)</title><author>Hunter, P.D ; Gilvear, D.J ; Tyler, A.N ; Willby, N.J ; Kelly, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3894-b9410bf3f32f11eecc415b3b3ae51fb7d41d716d87a57c96d592c2c7bc059b7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Applied ecology</topic><topic>aquatic plants</topic><topic>Biological and medical sciences</topic><topic>Conservation, protection and management of environment and wildlife</topic><topic>Fresh water ecosystems</topic><topic>Freshwater</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Habitats Directive</topic><topic>lakes</topic><topic>Marine</topic><topic>remote sensing</topic><topic>support vector machines</topic><topic>Synecology</topic><topic>Water Framework Directive</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunter, P.D</creatorcontrib><creatorcontrib>Gilvear, D.J</creatorcontrib><creatorcontrib>Tyler, A.N</creatorcontrib><creatorcontrib>Willby, N.J</creatorcontrib><creatorcontrib>Kelly, A</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Aquatic conservation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunter, P.D</au><au>Gilvear, D.J</au><au>Tyler, A.N</au><au>Willby, N.J</au><au>Kelly, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping macrophytic vegetation in shallow lakes using the Compact Airborne Spectrographic Imager (CASI)</atitle><jtitle>Aquatic conservation</jtitle><addtitle>Aquatic Conserv: Mar. Freshw. Ecosyst</addtitle><date>2010-11</date><risdate>2010</risdate><volume>20</volume><issue>7</issue><spage>717</spage><epage>727</epage><pages>717-727</pages><issn>1052-7613</issn><issn>1099-0755</issn><eissn>1099-0755</eissn><abstract>1. The ecological status of shallow lakes is highly dependent on the abundance and composition of macrophytes. However, large‐scale surveys are often confined to a small number of water bodies and undertaken only infrequently owing to logistical and financial constraints. 2. Data acquired by the Compact Airborne Spectrographic Imager‐2 (CASI‐2) was used to map the distribution of macrophytes in the Upper Thurne region of the Norfolk Broads, UK. Three different approaches to image classification were evaluated: (i) Euclidean minimum distance, (ii) Gaussian maximum likelihood, and (iii) support vector machines. 3. The results show macrophyte growth‐habits (i.e. submerged, floating‐leaved, partially‐emergent, emergent) and submerged species could be mapped with a maximum overall classification accuracy of 78% and 87%, respectively. The Gaussian maximum likelihood algorithm and support vector machine returned the highest classification accuracies in each instance. 4. This study suggests that remote sensing is a potentially powerful tool for large‐scale assessment of the cover and distribution of aquatic vegetation in clear water shallow lakes, particularly with respect to upscaling field survey data to a functionally relevant form, and supporting site‐condition monitoring under the European Union Habitats (92/43/EEC) and Water Framework (2000/60/EC) directives. Copyright © 2010 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/aqc.1144</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1052-7613 |
ispartof | Aquatic conservation, 2010-11, Vol.20 (7), p.717-727 |
issn | 1052-7613 1099-0755 1099-0755 |
language | eng |
recordid | cdi_proquest_miscellaneous_888102920 |
source | Access via Wiley Online Library |
subjects | Animal and plant ecology Animal, plant and microbial ecology Applied ecology aquatic plants Biological and medical sciences Conservation, protection and management of environment and wildlife Fresh water ecosystems Freshwater Fundamental and applied biological sciences. Psychology General aspects Habitats Directive lakes Marine remote sensing support vector machines Synecology Water Framework Directive |
title | Mapping macrophytic vegetation in shallow lakes using the Compact Airborne Spectrographic Imager (CASI) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T07%3A43%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20macrophytic%20vegetation%20in%20shallow%20lakes%20using%20the%20Compact%20Airborne%20Spectrographic%20Imager%20(CASI)&rft.jtitle=Aquatic%20conservation&rft.au=Hunter,%20P.D&rft.date=2010-11&rft.volume=20&rft.issue=7&rft.spage=717&rft.epage=727&rft.pages=717-727&rft.issn=1052-7613&rft.eissn=1099-0755&rft_id=info:doi/10.1002/aqc.1144&rft_dat=%3Cproquest_cross%3E888102920%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=888102920&rft_id=info:pmid/&rfr_iscdi=true |