Use of biogenic and abiotic elemental selenium nanospheres to sequester elemental mercury released from mercury contaminated museum specimens
Mercuric chloride solutions have historically been used as pesticides to prevent bacterial, fungal and insect degradation of herbarium specimens. The University of Manchester museum herbarium contains over a million specimens from numerous collections, many preserved using HgCl 2 and its transformat...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2011-05, Vol.189 (3), p.660-669 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 669 |
---|---|
container_issue | 3 |
container_start_page | 660 |
container_title | Journal of hazardous materials |
container_volume | 189 |
creator | Fellowes, J.W. Pattrick, R.A.D. Green, D.I. Dent, A. Lloyd, J.R. Pearce, C.I. |
description | Mercuric chloride solutions have historically been used as pesticides to prevent bacterial, fungal and insect degradation of herbarium specimens. The University of Manchester museum herbarium contains over a million specimens from numerous collections, many preserved using HgCl
2 and its transformation to
H
g
v
0
represents a health risk to herbarium staff. Elevated mercury concentrations in work areas (∼1.7
μg
m
−3) are below advised safe levels ( |
doi_str_mv | 10.1016/j.jhazmat.2011.01.079 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_888100969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389411001014</els_id><sourcerecordid>1770349275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-b09530c8e52405a48cf54a3bbb7361e22cc149ad13713116ea44874f40d349143</originalsourceid><addsrcrecordid>eNqFks1u1DAQxy0EokvhEYBcEFx2GcdO7JwQqviSKnGAPVuOM2m9iu3FTpDKO_DOzLJL4USlkcYe_-ZLfzP2lMOGA29f7za7a_sj2HlTA-cbIFPdPbbiWom1EKK9z1YgQK6F7uQZe1TKDgC4auRDdlZzASCFWLGf24JVGqvepyuM3lU2DpWl20xnnDBgnO1UFTpGv4Qq2pjK_hozlmpOFP-2YJkx_8MGzG7JN1WmkC04VGNO4TbqEkHBRzvTS1gKUtGyR-cpuzxmD0Y7FXxy8uds-_7d14uP68vPHz5dvL1cu0bAvO6hI-80NrWExkrtxkZa0fe9Ei3HunaOy84OXCguOG_RSqmVHCUMQnZcinP28lh3n9PvBUzwxeE02YhpKUZrzQG6trubbLVQmvOayFf_JblSQN1r1RDaHFGXUykZR7PPPth8YziYg7pmZ07qmoO6BsjUYZhnpxZLH3C4zfojJwEvToAtzk5jttH58peTda0bpYh7fuRGm4y9ysRsv1Cnhn5IR3trIt4cCSQZvnvMpjiP0eHgM7rZDMnfMewvtXnQkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770349275</pqid></control><display><type>article</type><title>Use of biogenic and abiotic elemental selenium nanospheres to sequester elemental mercury released from mercury contaminated museum specimens</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Fellowes, J.W. ; Pattrick, R.A.D. ; Green, D.I. ; Dent, A. ; Lloyd, J.R. ; Pearce, C.I.</creator><creatorcontrib>Fellowes, J.W. ; Pattrick, R.A.D. ; Green, D.I. ; Dent, A. ; Lloyd, J.R. ; Pearce, C.I.</creatorcontrib><description>Mercuric chloride solutions have historically been used as pesticides to prevent bacterial, fungal and insect degradation of herbarium specimens. The University of Manchester museum herbarium contains over a million specimens from numerous collections, many preserved using HgCl
2 and its transformation to
H
g
v
0
represents a health risk to herbarium staff. Elevated mercury concentrations in work areas (∼1.7
μg
m
−3) are below advised safe levels (<25
μg
m
−3) but up to 90
μg
m
−3 mercury vapour was measured in specimen boxes, representing a risk when accessing the samples. Mercury vapour release correlated strongly with temperature. Mercury salts were observed on botanical specimens at concentrations up to 2.85
wt% (bulk); XPS, SEM–EDS and XANES suggest the presence of residual HgCl
2 as well as cubic HgS and HgO. Bacterially derived, amorphous nanospheres of elemental selenium effectively sequestered the mercury vapour in the specimen boxes (up to 19
wt%), and analysis demonstrated that the
H
g
v
0
was oxidised by the selenium to form stable HgSe on the surface of the nanospheres. Biogenic Se
0 can be used to reduce
H
g
v
0
in long term, slow release environments.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2011.01.079</identifier><identifier>PMID: 21300433</identifier><identifier>CODEN: JHMAD9</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Absorption ; Applied sciences ; Atmospheric pollution ; Bacteria ; Botanical collections ; Environmental Monitoring - methods ; Eucalyptus - metabolism ; Exact sciences and technology ; fungi ; Geobacter - metabolism ; Geobacter sulfurreducens ; herbaria ; insects ; mercuric chloride ; Mercury ; Mercury - chemistry ; Mercury - toxicity ; Mercury contamination ; Metal Nanoparticles - chemistry ; Museums ; Nanoparticles - chemistry ; Nanospheres ; Nanospheres - chemistry ; Plant Leaves - metabolism ; Pollution ; Risk ; Selenium ; Selenium - chemistry ; Selenium nanoparticles ; Sulfides - chemistry ; Temperature ; vapors ; Vapour ; X-Ray Diffraction ; X-ray photoelectron spectroscopy</subject><ispartof>Journal of hazardous materials, 2011-05, Vol.189 (3), p.660-669</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-b09530c8e52405a48cf54a3bbb7361e22cc149ad13713116ea44874f40d349143</citedby><cites>FETCH-LOGICAL-c530t-b09530c8e52405a48cf54a3bbb7361e22cc149ad13713116ea44874f40d349143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhazmat.2011.01.079$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24228577$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21300433$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fellowes, J.W.</creatorcontrib><creatorcontrib>Pattrick, R.A.D.</creatorcontrib><creatorcontrib>Green, D.I.</creatorcontrib><creatorcontrib>Dent, A.</creatorcontrib><creatorcontrib>Lloyd, J.R.</creatorcontrib><creatorcontrib>Pearce, C.I.</creatorcontrib><title>Use of biogenic and abiotic elemental selenium nanospheres to sequester elemental mercury released from mercury contaminated museum specimens</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>Mercuric chloride solutions have historically been used as pesticides to prevent bacterial, fungal and insect degradation of herbarium specimens. The University of Manchester museum herbarium contains over a million specimens from numerous collections, many preserved using HgCl
2 and its transformation to
H
g
v
0
represents a health risk to herbarium staff. Elevated mercury concentrations in work areas (∼1.7
μg
m
−3) are below advised safe levels (<25
μg
m
−3) but up to 90
μg
m
−3 mercury vapour was measured in specimen boxes, representing a risk when accessing the samples. Mercury vapour release correlated strongly with temperature. Mercury salts were observed on botanical specimens at concentrations up to 2.85
wt% (bulk); XPS, SEM–EDS and XANES suggest the presence of residual HgCl
2 as well as cubic HgS and HgO. Bacterially derived, amorphous nanospheres of elemental selenium effectively sequestered the mercury vapour in the specimen boxes (up to 19
wt%), and analysis demonstrated that the
H
g
v
0
was oxidised by the selenium to form stable HgSe on the surface of the nanospheres. Biogenic Se
0 can be used to reduce
H
g
v
0
in long term, slow release environments.</description><subject>Absorption</subject><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>Bacteria</subject><subject>Botanical collections</subject><subject>Environmental Monitoring - methods</subject><subject>Eucalyptus - metabolism</subject><subject>Exact sciences and technology</subject><subject>fungi</subject><subject>Geobacter - metabolism</subject><subject>Geobacter sulfurreducens</subject><subject>herbaria</subject><subject>insects</subject><subject>mercuric chloride</subject><subject>Mercury</subject><subject>Mercury - chemistry</subject><subject>Mercury - toxicity</subject><subject>Mercury contamination</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Museums</subject><subject>Nanoparticles - chemistry</subject><subject>Nanospheres</subject><subject>Nanospheres - chemistry</subject><subject>Plant Leaves - metabolism</subject><subject>Pollution</subject><subject>Risk</subject><subject>Selenium</subject><subject>Selenium - chemistry</subject><subject>Selenium nanoparticles</subject><subject>Sulfides - chemistry</subject><subject>Temperature</subject><subject>vapors</subject><subject>Vapour</subject><subject>X-Ray Diffraction</subject><subject>X-ray photoelectron spectroscopy</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1u1DAQxy0EokvhEYBcEFx2GcdO7JwQqviSKnGAPVuOM2m9iu3FTpDKO_DOzLJL4USlkcYe_-ZLfzP2lMOGA29f7za7a_sj2HlTA-cbIFPdPbbiWom1EKK9z1YgQK6F7uQZe1TKDgC4auRDdlZzASCFWLGf24JVGqvepyuM3lU2DpWl20xnnDBgnO1UFTpGv4Qq2pjK_hozlmpOFP-2YJkx_8MGzG7JN1WmkC04VGNO4TbqEkHBRzvTS1gKUtGyR-cpuzxmD0Y7FXxy8uds-_7d14uP68vPHz5dvL1cu0bAvO6hI-80NrWExkrtxkZa0fe9Ei3HunaOy84OXCguOG_RSqmVHCUMQnZcinP28lh3n9PvBUzwxeE02YhpKUZrzQG6trubbLVQmvOayFf_JblSQN1r1RDaHFGXUykZR7PPPth8YziYg7pmZ07qmoO6BsjUYZhnpxZLH3C4zfojJwEvToAtzk5jttH58peTda0bpYh7fuRGm4y9ysRsv1Cnhn5IR3trIt4cCSQZvnvMpjiP0eHgM7rZDMnfMewvtXnQkQ</recordid><startdate>20110530</startdate><enddate>20110530</enddate><creator>Fellowes, J.W.</creator><creator>Pattrick, R.A.D.</creator><creator>Green, D.I.</creator><creator>Dent, A.</creator><creator>Lloyd, J.R.</creator><creator>Pearce, C.I.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>7X8</scope><scope>7QL</scope><scope>7ST</scope><scope>7TV</scope><scope>7U1</scope><scope>7U2</scope><scope>7U7</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20110530</creationdate><title>Use of biogenic and abiotic elemental selenium nanospheres to sequester elemental mercury released from mercury contaminated museum specimens</title><author>Fellowes, J.W. ; Pattrick, R.A.D. ; Green, D.I. ; Dent, A. ; Lloyd, J.R. ; Pearce, C.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-b09530c8e52405a48cf54a3bbb7361e22cc149ad13713116ea44874f40d349143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Absorption</topic><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>Bacteria</topic><topic>Botanical collections</topic><topic>Environmental Monitoring - methods</topic><topic>Eucalyptus - metabolism</topic><topic>Exact sciences and technology</topic><topic>fungi</topic><topic>Geobacter - metabolism</topic><topic>Geobacter sulfurreducens</topic><topic>herbaria</topic><topic>insects</topic><topic>mercuric chloride</topic><topic>Mercury</topic><topic>Mercury - chemistry</topic><topic>Mercury - toxicity</topic><topic>Mercury contamination</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Museums</topic><topic>Nanoparticles - chemistry</topic><topic>Nanospheres</topic><topic>Nanospheres - chemistry</topic><topic>Plant Leaves - metabolism</topic><topic>Pollution</topic><topic>Risk</topic><topic>Selenium</topic><topic>Selenium - chemistry</topic><topic>Selenium nanoparticles</topic><topic>Sulfides - chemistry</topic><topic>Temperature</topic><topic>vapors</topic><topic>Vapour</topic><topic>X-Ray Diffraction</topic><topic>X-ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fellowes, J.W.</creatorcontrib><creatorcontrib>Pattrick, R.A.D.</creatorcontrib><creatorcontrib>Green, D.I.</creatorcontrib><creatorcontrib>Dent, A.</creatorcontrib><creatorcontrib>Lloyd, J.R.</creatorcontrib><creatorcontrib>Pearce, C.I.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fellowes, J.W.</au><au>Pattrick, R.A.D.</au><au>Green, D.I.</au><au>Dent, A.</au><au>Lloyd, J.R.</au><au>Pearce, C.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of biogenic and abiotic elemental selenium nanospheres to sequester elemental mercury released from mercury contaminated museum specimens</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2011-05-30</date><risdate>2011</risdate><volume>189</volume><issue>3</issue><spage>660</spage><epage>669</epage><pages>660-669</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><coden>JHMAD9</coden><abstract>Mercuric chloride solutions have historically been used as pesticides to prevent bacterial, fungal and insect degradation of herbarium specimens. The University of Manchester museum herbarium contains over a million specimens from numerous collections, many preserved using HgCl
2 and its transformation to
H
g
v
0
represents a health risk to herbarium staff. Elevated mercury concentrations in work areas (∼1.7
μg
m
−3) are below advised safe levels (<25
μg
m
−3) but up to 90
μg
m
−3 mercury vapour was measured in specimen boxes, representing a risk when accessing the samples. Mercury vapour release correlated strongly with temperature. Mercury salts were observed on botanical specimens at concentrations up to 2.85
wt% (bulk); XPS, SEM–EDS and XANES suggest the presence of residual HgCl
2 as well as cubic HgS and HgO. Bacterially derived, amorphous nanospheres of elemental selenium effectively sequestered the mercury vapour in the specimen boxes (up to 19
wt%), and analysis demonstrated that the
H
g
v
0
was oxidised by the selenium to form stable HgSe on the surface of the nanospheres. Biogenic Se
0 can be used to reduce
H
g
v
0
in long term, slow release environments.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>21300433</pmid><doi>10.1016/j.jhazmat.2011.01.079</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3894 |
ispartof | Journal of hazardous materials, 2011-05, Vol.189 (3), p.660-669 |
issn | 0304-3894 1873-3336 |
language | eng |
recordid | cdi_proquest_miscellaneous_888100969 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Absorption Applied sciences Atmospheric pollution Bacteria Botanical collections Environmental Monitoring - methods Eucalyptus - metabolism Exact sciences and technology fungi Geobacter - metabolism Geobacter sulfurreducens herbaria insects mercuric chloride Mercury Mercury - chemistry Mercury - toxicity Mercury contamination Metal Nanoparticles - chemistry Museums Nanoparticles - chemistry Nanospheres Nanospheres - chemistry Plant Leaves - metabolism Pollution Risk Selenium Selenium - chemistry Selenium nanoparticles Sulfides - chemistry Temperature vapors Vapour X-Ray Diffraction X-ray photoelectron spectroscopy |
title | Use of biogenic and abiotic elemental selenium nanospheres to sequester elemental mercury released from mercury contaminated museum specimens |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A43%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20biogenic%20and%20abiotic%20elemental%20selenium%20nanospheres%20to%20sequester%20elemental%20mercury%20released%20from%20mercury%20contaminated%20museum%20specimens&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Fellowes,%20J.W.&rft.date=2011-05-30&rft.volume=189&rft.issue=3&rft.spage=660&rft.epage=669&rft.pages=660-669&rft.issn=0304-3894&rft.eissn=1873-3336&rft.coden=JHMAD9&rft_id=info:doi/10.1016/j.jhazmat.2011.01.079&rft_dat=%3Cproquest_cross%3E1770349275%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770349275&rft_id=info:pmid/21300433&rft_els_id=S0304389411001014&rfr_iscdi=true |