Use of biogenic and abiotic elemental selenium nanospheres to sequester elemental mercury released from mercury contaminated museum specimens

Mercuric chloride solutions have historically been used as pesticides to prevent bacterial, fungal and insect degradation of herbarium specimens. The University of Manchester museum herbarium contains over a million specimens from numerous collections, many preserved using HgCl 2 and its transformat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2011-05, Vol.189 (3), p.660-669
Hauptverfasser: Fellowes, J.W., Pattrick, R.A.D., Green, D.I., Dent, A., Lloyd, J.R., Pearce, C.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 669
container_issue 3
container_start_page 660
container_title Journal of hazardous materials
container_volume 189
creator Fellowes, J.W.
Pattrick, R.A.D.
Green, D.I.
Dent, A.
Lloyd, J.R.
Pearce, C.I.
description Mercuric chloride solutions have historically been used as pesticides to prevent bacterial, fungal and insect degradation of herbarium specimens. The University of Manchester museum herbarium contains over a million specimens from numerous collections, many preserved using HgCl 2 and its transformation to H g v 0 represents a health risk to herbarium staff. Elevated mercury concentrations in work areas (∼1.7 μg m −3) are below advised safe levels (
doi_str_mv 10.1016/j.jhazmat.2011.01.079
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_888100969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389411001014</els_id><sourcerecordid>1770349275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-b09530c8e52405a48cf54a3bbb7361e22cc149ad13713116ea44874f40d349143</originalsourceid><addsrcrecordid>eNqFks1u1DAQxy0EokvhEYBcEFx2GcdO7JwQqviSKnGAPVuOM2m9iu3FTpDKO_DOzLJL4USlkcYe_-ZLfzP2lMOGA29f7za7a_sj2HlTA-cbIFPdPbbiWom1EKK9z1YgQK6F7uQZe1TKDgC4auRDdlZzASCFWLGf24JVGqvepyuM3lU2DpWl20xnnDBgnO1UFTpGv4Qq2pjK_hozlmpOFP-2YJkx_8MGzG7JN1WmkC04VGNO4TbqEkHBRzvTS1gKUtGyR-cpuzxmD0Y7FXxy8uds-_7d14uP68vPHz5dvL1cu0bAvO6hI-80NrWExkrtxkZa0fe9Ei3HunaOy84OXCguOG_RSqmVHCUMQnZcinP28lh3n9PvBUzwxeE02YhpKUZrzQG6trubbLVQmvOayFf_JblSQN1r1RDaHFGXUykZR7PPPth8YziYg7pmZ07qmoO6BsjUYZhnpxZLH3C4zfojJwEvToAtzk5jttH58peTda0bpYh7fuRGm4y9ysRsv1Cnhn5IR3trIt4cCSQZvnvMpjiP0eHgM7rZDMnfMewvtXnQkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770349275</pqid></control><display><type>article</type><title>Use of biogenic and abiotic elemental selenium nanospheres to sequester elemental mercury released from mercury contaminated museum specimens</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Fellowes, J.W. ; Pattrick, R.A.D. ; Green, D.I. ; Dent, A. ; Lloyd, J.R. ; Pearce, C.I.</creator><creatorcontrib>Fellowes, J.W. ; Pattrick, R.A.D. ; Green, D.I. ; Dent, A. ; Lloyd, J.R. ; Pearce, C.I.</creatorcontrib><description>Mercuric chloride solutions have historically been used as pesticides to prevent bacterial, fungal and insect degradation of herbarium specimens. The University of Manchester museum herbarium contains over a million specimens from numerous collections, many preserved using HgCl 2 and its transformation to H g v 0 represents a health risk to herbarium staff. Elevated mercury concentrations in work areas (∼1.7 μg m −3) are below advised safe levels (&lt;25 μg m −3) but up to 90 μg m −3 mercury vapour was measured in specimen boxes, representing a risk when accessing the samples. Mercury vapour release correlated strongly with temperature. Mercury salts were observed on botanical specimens at concentrations up to 2.85 wt% (bulk); XPS, SEM–EDS and XANES suggest the presence of residual HgCl 2 as well as cubic HgS and HgO. Bacterially derived, amorphous nanospheres of elemental selenium effectively sequestered the mercury vapour in the specimen boxes (up to 19 wt%), and analysis demonstrated that the H g v 0 was oxidised by the selenium to form stable HgSe on the surface of the nanospheres. Biogenic Se 0 can be used to reduce H g v 0 in long term, slow release environments.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2011.01.079</identifier><identifier>PMID: 21300433</identifier><identifier>CODEN: JHMAD9</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Absorption ; Applied sciences ; Atmospheric pollution ; Bacteria ; Botanical collections ; Environmental Monitoring - methods ; Eucalyptus - metabolism ; Exact sciences and technology ; fungi ; Geobacter - metabolism ; Geobacter sulfurreducens ; herbaria ; insects ; mercuric chloride ; Mercury ; Mercury - chemistry ; Mercury - toxicity ; Mercury contamination ; Metal Nanoparticles - chemistry ; Museums ; Nanoparticles - chemistry ; Nanospheres ; Nanospheres - chemistry ; Plant Leaves - metabolism ; Pollution ; Risk ; Selenium ; Selenium - chemistry ; Selenium nanoparticles ; Sulfides - chemistry ; Temperature ; vapors ; Vapour ; X-Ray Diffraction ; X-ray photoelectron spectroscopy</subject><ispartof>Journal of hazardous materials, 2011-05, Vol.189 (3), p.660-669</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-b09530c8e52405a48cf54a3bbb7361e22cc149ad13713116ea44874f40d349143</citedby><cites>FETCH-LOGICAL-c530t-b09530c8e52405a48cf54a3bbb7361e22cc149ad13713116ea44874f40d349143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhazmat.2011.01.079$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24228577$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21300433$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fellowes, J.W.</creatorcontrib><creatorcontrib>Pattrick, R.A.D.</creatorcontrib><creatorcontrib>Green, D.I.</creatorcontrib><creatorcontrib>Dent, A.</creatorcontrib><creatorcontrib>Lloyd, J.R.</creatorcontrib><creatorcontrib>Pearce, C.I.</creatorcontrib><title>Use of biogenic and abiotic elemental selenium nanospheres to sequester elemental mercury released from mercury contaminated museum specimens</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>Mercuric chloride solutions have historically been used as pesticides to prevent bacterial, fungal and insect degradation of herbarium specimens. The University of Manchester museum herbarium contains over a million specimens from numerous collections, many preserved using HgCl 2 and its transformation to H g v 0 represents a health risk to herbarium staff. Elevated mercury concentrations in work areas (∼1.7 μg m −3) are below advised safe levels (&lt;25 μg m −3) but up to 90 μg m −3 mercury vapour was measured in specimen boxes, representing a risk when accessing the samples. Mercury vapour release correlated strongly with temperature. Mercury salts were observed on botanical specimens at concentrations up to 2.85 wt% (bulk); XPS, SEM–EDS and XANES suggest the presence of residual HgCl 2 as well as cubic HgS and HgO. Bacterially derived, amorphous nanospheres of elemental selenium effectively sequestered the mercury vapour in the specimen boxes (up to 19 wt%), and analysis demonstrated that the H g v 0 was oxidised by the selenium to form stable HgSe on the surface of the nanospheres. Biogenic Se 0 can be used to reduce H g v 0 in long term, slow release environments.</description><subject>Absorption</subject><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>Bacteria</subject><subject>Botanical collections</subject><subject>Environmental Monitoring - methods</subject><subject>Eucalyptus - metabolism</subject><subject>Exact sciences and technology</subject><subject>fungi</subject><subject>Geobacter - metabolism</subject><subject>Geobacter sulfurreducens</subject><subject>herbaria</subject><subject>insects</subject><subject>mercuric chloride</subject><subject>Mercury</subject><subject>Mercury - chemistry</subject><subject>Mercury - toxicity</subject><subject>Mercury contamination</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Museums</subject><subject>Nanoparticles - chemistry</subject><subject>Nanospheres</subject><subject>Nanospheres - chemistry</subject><subject>Plant Leaves - metabolism</subject><subject>Pollution</subject><subject>Risk</subject><subject>Selenium</subject><subject>Selenium - chemistry</subject><subject>Selenium nanoparticles</subject><subject>Sulfides - chemistry</subject><subject>Temperature</subject><subject>vapors</subject><subject>Vapour</subject><subject>X-Ray Diffraction</subject><subject>X-ray photoelectron spectroscopy</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1u1DAQxy0EokvhEYBcEFx2GcdO7JwQqviSKnGAPVuOM2m9iu3FTpDKO_DOzLJL4USlkcYe_-ZLfzP2lMOGA29f7za7a_sj2HlTA-cbIFPdPbbiWom1EKK9z1YgQK6F7uQZe1TKDgC4auRDdlZzASCFWLGf24JVGqvepyuM3lU2DpWl20xnnDBgnO1UFTpGv4Qq2pjK_hozlmpOFP-2YJkx_8MGzG7JN1WmkC04VGNO4TbqEkHBRzvTS1gKUtGyR-cpuzxmD0Y7FXxy8uds-_7d14uP68vPHz5dvL1cu0bAvO6hI-80NrWExkrtxkZa0fe9Ei3HunaOy84OXCguOG_RSqmVHCUMQnZcinP28lh3n9PvBUzwxeE02YhpKUZrzQG6trubbLVQmvOayFf_JblSQN1r1RDaHFGXUykZR7PPPth8YziYg7pmZ07qmoO6BsjUYZhnpxZLH3C4zfojJwEvToAtzk5jttH58peTda0bpYh7fuRGm4y9ysRsv1Cnhn5IR3trIt4cCSQZvnvMpjiP0eHgM7rZDMnfMewvtXnQkQ</recordid><startdate>20110530</startdate><enddate>20110530</enddate><creator>Fellowes, J.W.</creator><creator>Pattrick, R.A.D.</creator><creator>Green, D.I.</creator><creator>Dent, A.</creator><creator>Lloyd, J.R.</creator><creator>Pearce, C.I.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>7X8</scope><scope>7QL</scope><scope>7ST</scope><scope>7TV</scope><scope>7U1</scope><scope>7U2</scope><scope>7U7</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20110530</creationdate><title>Use of biogenic and abiotic elemental selenium nanospheres to sequester elemental mercury released from mercury contaminated museum specimens</title><author>Fellowes, J.W. ; Pattrick, R.A.D. ; Green, D.I. ; Dent, A. ; Lloyd, J.R. ; Pearce, C.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-b09530c8e52405a48cf54a3bbb7361e22cc149ad13713116ea44874f40d349143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Absorption</topic><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>Bacteria</topic><topic>Botanical collections</topic><topic>Environmental Monitoring - methods</topic><topic>Eucalyptus - metabolism</topic><topic>Exact sciences and technology</topic><topic>fungi</topic><topic>Geobacter - metabolism</topic><topic>Geobacter sulfurreducens</topic><topic>herbaria</topic><topic>insects</topic><topic>mercuric chloride</topic><topic>Mercury</topic><topic>Mercury - chemistry</topic><topic>Mercury - toxicity</topic><topic>Mercury contamination</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Museums</topic><topic>Nanoparticles - chemistry</topic><topic>Nanospheres</topic><topic>Nanospheres - chemistry</topic><topic>Plant Leaves - metabolism</topic><topic>Pollution</topic><topic>Risk</topic><topic>Selenium</topic><topic>Selenium - chemistry</topic><topic>Selenium nanoparticles</topic><topic>Sulfides - chemistry</topic><topic>Temperature</topic><topic>vapors</topic><topic>Vapour</topic><topic>X-Ray Diffraction</topic><topic>X-ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fellowes, J.W.</creatorcontrib><creatorcontrib>Pattrick, R.A.D.</creatorcontrib><creatorcontrib>Green, D.I.</creatorcontrib><creatorcontrib>Dent, A.</creatorcontrib><creatorcontrib>Lloyd, J.R.</creatorcontrib><creatorcontrib>Pearce, C.I.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fellowes, J.W.</au><au>Pattrick, R.A.D.</au><au>Green, D.I.</au><au>Dent, A.</au><au>Lloyd, J.R.</au><au>Pearce, C.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of biogenic and abiotic elemental selenium nanospheres to sequester elemental mercury released from mercury contaminated museum specimens</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2011-05-30</date><risdate>2011</risdate><volume>189</volume><issue>3</issue><spage>660</spage><epage>669</epage><pages>660-669</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><coden>JHMAD9</coden><abstract>Mercuric chloride solutions have historically been used as pesticides to prevent bacterial, fungal and insect degradation of herbarium specimens. The University of Manchester museum herbarium contains over a million specimens from numerous collections, many preserved using HgCl 2 and its transformation to H g v 0 represents a health risk to herbarium staff. Elevated mercury concentrations in work areas (∼1.7 μg m −3) are below advised safe levels (&lt;25 μg m −3) but up to 90 μg m −3 mercury vapour was measured in specimen boxes, representing a risk when accessing the samples. Mercury vapour release correlated strongly with temperature. Mercury salts were observed on botanical specimens at concentrations up to 2.85 wt% (bulk); XPS, SEM–EDS and XANES suggest the presence of residual HgCl 2 as well as cubic HgS and HgO. Bacterially derived, amorphous nanospheres of elemental selenium effectively sequestered the mercury vapour in the specimen boxes (up to 19 wt%), and analysis demonstrated that the H g v 0 was oxidised by the selenium to form stable HgSe on the surface of the nanospheres. Biogenic Se 0 can be used to reduce H g v 0 in long term, slow release environments.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>21300433</pmid><doi>10.1016/j.jhazmat.2011.01.079</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3894
ispartof Journal of hazardous materials, 2011-05, Vol.189 (3), p.660-669
issn 0304-3894
1873-3336
language eng
recordid cdi_proquest_miscellaneous_888100969
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Absorption
Applied sciences
Atmospheric pollution
Bacteria
Botanical collections
Environmental Monitoring - methods
Eucalyptus - metabolism
Exact sciences and technology
fungi
Geobacter - metabolism
Geobacter sulfurreducens
herbaria
insects
mercuric chloride
Mercury
Mercury - chemistry
Mercury - toxicity
Mercury contamination
Metal Nanoparticles - chemistry
Museums
Nanoparticles - chemistry
Nanospheres
Nanospheres - chemistry
Plant Leaves - metabolism
Pollution
Risk
Selenium
Selenium - chemistry
Selenium nanoparticles
Sulfides - chemistry
Temperature
vapors
Vapour
X-Ray Diffraction
X-ray photoelectron spectroscopy
title Use of biogenic and abiotic elemental selenium nanospheres to sequester elemental mercury released from mercury contaminated museum specimens
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A43%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20biogenic%20and%20abiotic%20elemental%20selenium%20nanospheres%20to%20sequester%20elemental%20mercury%20released%20from%20mercury%20contaminated%20museum%20specimens&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Fellowes,%20J.W.&rft.date=2011-05-30&rft.volume=189&rft.issue=3&rft.spage=660&rft.epage=669&rft.pages=660-669&rft.issn=0304-3894&rft.eissn=1873-3336&rft.coden=JHMAD9&rft_id=info:doi/10.1016/j.jhazmat.2011.01.079&rft_dat=%3Cproquest_cross%3E1770349275%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770349275&rft_id=info:pmid/21300433&rft_els_id=S0304389411001014&rfr_iscdi=true