Label-free identification of bacterial microcolonies via elastic scattering

Label-free microcolony identification via elastic light scattering was investigated for three different genera: Salmonella enterica serovar Montevideo, Listeria monocytogenes F4244, and Escherichia coli DH5α. Microcolonies were defined as bacterial colonies in their late-lag phase to early-exponenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2011-03, Vol.108 (3), p.637-644
Hauptverfasser: Bae, Euiwon, Bai, Nan, Aroonnual, Amornrat, Bhunia, Arun K, Hirleman, E. Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 644
container_issue 3
container_start_page 637
container_title Biotechnology and bioengineering
container_volume 108
creator Bae, Euiwon
Bai, Nan
Aroonnual, Amornrat
Bhunia, Arun K
Hirleman, E. Daniel
description Label-free microcolony identification via elastic light scattering was investigated for three different genera: Salmonella enterica serovar Montevideo, Listeria monocytogenes F4244, and Escherichia coli DH5α. Microcolonies were defined as bacterial colonies in their late-lag phase to early-exponential phase with the diameter range of 100-200 µm. To link biophysical characteristics with corresponding scattering patterns, a phase contrast microscope and a confocal displacement meter were used to measure the colony diameter and its 3D height profile. The results indicated that the growth characteristics of microcolonies were encoded in their morphologies which correlated to the characteristic diffraction patterns. Proposed methodology was able to classify three genera based on comprehensive phenotypic map which incorporated growth speed, ring count, and colony diameter. While the proposed method illustrated the possibility of discriminating microcolonies in their early growth stage, more thorough biophysical understanding is needed to expand the technology to other species. Biotechnol. Bioeng. 2011; 108:637-644.
doi_str_mv 10.1002/bit.22980
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_888099453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>845766799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4750-1a333e9e26244dba120731852f9ed79db5994dcbd55360a2758125bb9789cf483</originalsourceid><addsrcrecordid>eNqF0V1rFDEUBuAgil2rF_4BHQQpXkybz0lyqYtdS9eK2NLLkGSSkpqdtMmstv_ebGdboSBehcBz3uScA8BrBPcRhPjAhHEfYyngEzBDUPIWYgmfghmEsGsJk3gHvCjlsl656LrnYAcjTDuG0AwcL7VxsfXZuSb0bhiDD1aPIQ1N8o3RdnQ56Nisgs3JppiG4ErzK-jGRV3GYJtS-QYNFy_BM69jca-25y44O_x8Ov_SLr8tjuYfl62lnMEWaUKIkw53mNLeaIQhJ0gw7KXruewNk5L21vSMkQ5qzJlAmBkjuZDWU0F2wd6Ue5XT9dqVUa1CsS5GPbi0LkoIAWsEI_-XlPGu41JW-e6RvEzrPNQ2NggJKjiu6MOE6ixKyc6rqxxWOt8qBNVmE6puQt1toto328C1Wbn-Qd6PvoL3W6DrCKPPerCh_HVEUMzuejiY3O8Q3e2_X1Sfjk7vn26nilBGd_NQofNP1XHCmTo_WSg5X5x8_c7O1WH1byfvdVL6ItdfnP3AEBGIZA1kkPwBAha1pQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>845184872</pqid></control><display><type>article</type><title>Label-free identification of bacterial microcolonies via elastic scattering</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Bae, Euiwon ; Bai, Nan ; Aroonnual, Amornrat ; Bhunia, Arun K ; Hirleman, E. Daniel</creator><creatorcontrib>Bae, Euiwon ; Bai, Nan ; Aroonnual, Amornrat ; Bhunia, Arun K ; Hirleman, E. Daniel</creatorcontrib><description>Label-free microcolony identification via elastic light scattering was investigated for three different genera: Salmonella enterica serovar Montevideo, Listeria monocytogenes F4244, and Escherichia coli DH5α. Microcolonies were defined as bacterial colonies in their late-lag phase to early-exponential phase with the diameter range of 100-200 µm. To link biophysical characteristics with corresponding scattering patterns, a phase contrast microscope and a confocal displacement meter were used to measure the colony diameter and its 3D height profile. The results indicated that the growth characteristics of microcolonies were encoded in their morphologies which correlated to the characteristic diffraction patterns. Proposed methodology was able to classify three genera based on comprehensive phenotypic map which incorporated growth speed, ring count, and colony diameter. While the proposed method illustrated the possibility of discriminating microcolonies in their early growth stage, more thorough biophysical understanding is needed to expand the technology to other species. Biotechnol. Bioeng. 2011; 108:637-644.</description><identifier>ISSN: 0006-3592</identifier><identifier>ISSN: 1097-0290</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.22980</identifier><identifier>PMID: 21246511</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Bacteria ; Bacteriological methods and techniques used in bacteriology ; Bacteriological Techniques - methods ; Bacteriology ; Biological and medical sciences ; Biophysics ; Biotechnology ; colony morphology ; E coli ; Escherichia coli ; Escherichia coli - classification ; Escherichia coli - growth &amp; development ; Fundamental and applied biological sciences. Psychology ; Identification ; Light ; Light scattering ; Listeria monocytogenes ; Listeria monocytogenes - classification ; Listeria monocytogenes - growth &amp; development ; Microbiology ; microcolony ; Microscopy, Phase-Contrast - methods ; Morphology ; Salmonella ; Salmonella enterica ; Salmonella enterica - classification ; Salmonella enterica - growth &amp; development</subject><ispartof>Biotechnology and bioengineering, 2011-03, Vol.108 (3), p.637-644</ispartof><rights>Copyright © 2010 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright John Wiley and Sons, Limited Mar 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4750-1a333e9e26244dba120731852f9ed79db5994dcbd55360a2758125bb9789cf483</citedby><cites>FETCH-LOGICAL-c4750-1a333e9e26244dba120731852f9ed79db5994dcbd55360a2758125bb9789cf483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.22980$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.22980$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23842553$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21246511$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bae, Euiwon</creatorcontrib><creatorcontrib>Bai, Nan</creatorcontrib><creatorcontrib>Aroonnual, Amornrat</creatorcontrib><creatorcontrib>Bhunia, Arun K</creatorcontrib><creatorcontrib>Hirleman, E. Daniel</creatorcontrib><title>Label-free identification of bacterial microcolonies via elastic scattering</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>Label-free microcolony identification via elastic light scattering was investigated for three different genera: Salmonella enterica serovar Montevideo, Listeria monocytogenes F4244, and Escherichia coli DH5α. Microcolonies were defined as bacterial colonies in their late-lag phase to early-exponential phase with the diameter range of 100-200 µm. To link biophysical characteristics with corresponding scattering patterns, a phase contrast microscope and a confocal displacement meter were used to measure the colony diameter and its 3D height profile. The results indicated that the growth characteristics of microcolonies were encoded in their morphologies which correlated to the characteristic diffraction patterns. Proposed methodology was able to classify three genera based on comprehensive phenotypic map which incorporated growth speed, ring count, and colony diameter. While the proposed method illustrated the possibility of discriminating microcolonies in their early growth stage, more thorough biophysical understanding is needed to expand the technology to other species. Biotechnol. Bioeng. 2011; 108:637-644.</description><subject>Bacteria</subject><subject>Bacteriological methods and techniques used in bacteriology</subject><subject>Bacteriological Techniques - methods</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Biophysics</subject><subject>Biotechnology</subject><subject>colony morphology</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - classification</subject><subject>Escherichia coli - growth &amp; development</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Identification</subject><subject>Light</subject><subject>Light scattering</subject><subject>Listeria monocytogenes</subject><subject>Listeria monocytogenes - classification</subject><subject>Listeria monocytogenes - growth &amp; development</subject><subject>Microbiology</subject><subject>microcolony</subject><subject>Microscopy, Phase-Contrast - methods</subject><subject>Morphology</subject><subject>Salmonella</subject><subject>Salmonella enterica</subject><subject>Salmonella enterica - classification</subject><subject>Salmonella enterica - growth &amp; development</subject><issn>0006-3592</issn><issn>1097-0290</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0V1rFDEUBuAgil2rF_4BHQQpXkybz0lyqYtdS9eK2NLLkGSSkpqdtMmstv_ebGdboSBehcBz3uScA8BrBPcRhPjAhHEfYyngEzBDUPIWYgmfghmEsGsJk3gHvCjlsl656LrnYAcjTDuG0AwcL7VxsfXZuSb0bhiDD1aPIQ1N8o3RdnQ56Nisgs3JppiG4ErzK-jGRV3GYJtS-QYNFy_BM69jca-25y44O_x8Ov_SLr8tjuYfl62lnMEWaUKIkw53mNLeaIQhJ0gw7KXruewNk5L21vSMkQ5qzJlAmBkjuZDWU0F2wd6Ue5XT9dqVUa1CsS5GPbi0LkoIAWsEI_-XlPGu41JW-e6RvEzrPNQ2NggJKjiu6MOE6ixKyc6rqxxWOt8qBNVmE6puQt1toto328C1Wbn-Qd6PvoL3W6DrCKPPerCh_HVEUMzuejiY3O8Q3e2_X1Sfjk7vn26nilBGd_NQofNP1XHCmTo_WSg5X5x8_c7O1WH1byfvdVL6ItdfnP3AEBGIZA1kkPwBAha1pQ</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Bae, Euiwon</creator><creator>Bai, Nan</creator><creator>Aroonnual, Amornrat</creator><creator>Bhunia, Arun K</creator><creator>Hirleman, E. Daniel</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>7QL</scope></search><sort><creationdate>201103</creationdate><title>Label-free identification of bacterial microcolonies via elastic scattering</title><author>Bae, Euiwon ; Bai, Nan ; Aroonnual, Amornrat ; Bhunia, Arun K ; Hirleman, E. Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4750-1a333e9e26244dba120731852f9ed79db5994dcbd55360a2758125bb9789cf483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bacteria</topic><topic>Bacteriological methods and techniques used in bacteriology</topic><topic>Bacteriological Techniques - methods</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Biophysics</topic><topic>Biotechnology</topic><topic>colony morphology</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - classification</topic><topic>Escherichia coli - growth &amp; development</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Identification</topic><topic>Light</topic><topic>Light scattering</topic><topic>Listeria monocytogenes</topic><topic>Listeria monocytogenes - classification</topic><topic>Listeria monocytogenes - growth &amp; development</topic><topic>Microbiology</topic><topic>microcolony</topic><topic>Microscopy, Phase-Contrast - methods</topic><topic>Morphology</topic><topic>Salmonella</topic><topic>Salmonella enterica</topic><topic>Salmonella enterica - classification</topic><topic>Salmonella enterica - growth &amp; development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bae, Euiwon</creatorcontrib><creatorcontrib>Bai, Nan</creatorcontrib><creatorcontrib>Aroonnual, Amornrat</creatorcontrib><creatorcontrib>Bhunia, Arun K</creatorcontrib><creatorcontrib>Hirleman, E. Daniel</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bae, Euiwon</au><au>Bai, Nan</au><au>Aroonnual, Amornrat</au><au>Bhunia, Arun K</au><au>Hirleman, E. Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Label-free identification of bacterial microcolonies via elastic scattering</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2011-03</date><risdate>2011</risdate><volume>108</volume><issue>3</issue><spage>637</spage><epage>644</epage><pages>637-644</pages><issn>0006-3592</issn><issn>1097-0290</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>Label-free microcolony identification via elastic light scattering was investigated for three different genera: Salmonella enterica serovar Montevideo, Listeria monocytogenes F4244, and Escherichia coli DH5α. Microcolonies were defined as bacterial colonies in their late-lag phase to early-exponential phase with the diameter range of 100-200 µm. To link biophysical characteristics with corresponding scattering patterns, a phase contrast microscope and a confocal displacement meter were used to measure the colony diameter and its 3D height profile. The results indicated that the growth characteristics of microcolonies were encoded in their morphologies which correlated to the characteristic diffraction patterns. Proposed methodology was able to classify three genera based on comprehensive phenotypic map which incorporated growth speed, ring count, and colony diameter. While the proposed method illustrated the possibility of discriminating microcolonies in their early growth stage, more thorough biophysical understanding is needed to expand the technology to other species. Biotechnol. Bioeng. 2011; 108:637-644.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21246511</pmid><doi>10.1002/bit.22980</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2011-03, Vol.108 (3), p.637-644
issn 0006-3592
1097-0290
1097-0290
language eng
recordid cdi_proquest_miscellaneous_888099453
source MEDLINE; Wiley Online Library All Journals
subjects Bacteria
Bacteriological methods and techniques used in bacteriology
Bacteriological Techniques - methods
Bacteriology
Biological and medical sciences
Biophysics
Biotechnology
colony morphology
E coli
Escherichia coli
Escherichia coli - classification
Escherichia coli - growth & development
Fundamental and applied biological sciences. Psychology
Identification
Light
Light scattering
Listeria monocytogenes
Listeria monocytogenes - classification
Listeria monocytogenes - growth & development
Microbiology
microcolony
Microscopy, Phase-Contrast - methods
Morphology
Salmonella
Salmonella enterica
Salmonella enterica - classification
Salmonella enterica - growth & development
title Label-free identification of bacterial microcolonies via elastic scattering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A59%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Label-free%20identification%20of%20bacterial%20microcolonies%20via%20elastic%20scattering&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Bae,%20Euiwon&rft.date=2011-03&rft.volume=108&rft.issue=3&rft.spage=637&rft.epage=644&rft.pages=637-644&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.22980&rft_dat=%3Cproquest_cross%3E845766799%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=845184872&rft_id=info:pmid/21246511&rfr_iscdi=true