From zero to hero—Design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production

Here, we describe the development of a genetically defined strain of l-lysine hyperproducing Corynebacterium glutamicum by systems metabolic engineering of the wild type. Implementation of only 12 defined genome-based changes in genes encoding central metabolic enzymes redirected major carbon fluxes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metabolic engineering 2011-03, Vol.13 (2), p.159-168
Hauptverfasser: Becker, Judith, Zelder, Oskar, Häfner, Stefan, Schröder, Hartwig, Wittmann, Christoph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 168
container_issue 2
container_start_page 159
container_title Metabolic engineering
container_volume 13
creator Becker, Judith
Zelder, Oskar
Häfner, Stefan
Schröder, Hartwig
Wittmann, Christoph
description Here, we describe the development of a genetically defined strain of l-lysine hyperproducing Corynebacterium glutamicum by systems metabolic engineering of the wild type. Implementation of only 12 defined genome-based changes in genes encoding central metabolic enzymes redirected major carbon fluxes as desired towards the optimal pathway usage predicted by in silico modeling. The final engineered C. glutamicum strain was able to produce lysine with a high yield of 0.55 g per gram of glucose, a titer of 120 g L −1 lysine and a productivity of 4.0 g L −1 h −1 in fed-batch culture. The specific glucose uptake rate of the wild type could be completely maintained during the engineering process, providing a highly viable producer. For these key criteria, the genetically defined strain created in this study lies at the maximum limit of classically derived producers developed over the last fifty years. This is the first report of a rationally derived lysine production strain that may be competitive with industrial applications. The design-based strategy for metabolic engineering reported here could serve as general concept for the rational development of microorganisms as efficient cellular factories for bio-production.
doi_str_mv 10.1016/j.ymben.2011.01.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_888097615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1096717611000048</els_id><sourcerecordid>855903878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-155c65e7b0f8052c2984a911f0da554c3548a3ec50527eeaa835ce72315c4763</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxi0EoqXwBEjgG6csdhz_yYEDWiggVeJAOVuOMwlexXaxHaRw4iF4Qp4EL1t6BGmkGXl-8401H0JPKdlRQsXLw27zA4RdSyjdkRqE3UPnlPSikVR19-9qKc7Qo5wPpIK8pw_RWUvbjioqzlG5TNHj75AiLhF_qfnXj59vILs5NIPJMOK85QI-Yw_FDHFxFkOYXQBILsw4Tngf0xZgMLbUp9XjeVmL8c7WcooJL82y5crjmxTH1RYXw2P0YDJLhie3-QJdX7693r9vrj6--7B_fdXYjnaloZxbwUEOZFKEt7btVWd6SicyGs47y3inDAPLa1MCGKMYtyBbRrntpGAX6MVJtm7-ukIu2rtsYVlMgLhmrZQivRSU_5_kvCdMSVVJdiJtijknmPRNct6kTVOij7bog_5jiz7aokkNwurUs1v9dfAw3s389aECz0_AZKI2c3JZf_5UFUT1TArSHolXJwLqwb45SDpbB8HC6BLYosfo_vmF34e3qp8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855903878</pqid></control><display><type>article</type><title>From zero to hero—Design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Becker, Judith ; Zelder, Oskar ; Häfner, Stefan ; Schröder, Hartwig ; Wittmann, Christoph</creator><creatorcontrib>Becker, Judith ; Zelder, Oskar ; Häfner, Stefan ; Schröder, Hartwig ; Wittmann, Christoph</creatorcontrib><description>Here, we describe the development of a genetically defined strain of l-lysine hyperproducing Corynebacterium glutamicum by systems metabolic engineering of the wild type. Implementation of only 12 defined genome-based changes in genes encoding central metabolic enzymes redirected major carbon fluxes as desired towards the optimal pathway usage predicted by in silico modeling. The final engineered C. glutamicum strain was able to produce lysine with a high yield of 0.55 g per gram of glucose, a titer of 120 g L −1 lysine and a productivity of 4.0 g L −1 h −1 in fed-batch culture. The specific glucose uptake rate of the wild type could be completely maintained during the engineering process, providing a highly viable producer. For these key criteria, the genetically defined strain created in this study lies at the maximum limit of classically derived producers developed over the last fifty years. This is the first report of a rationally derived lysine production strain that may be competitive with industrial applications. The design-based strategy for metabolic engineering reported here could serve as general concept for the rational development of microorganisms as efficient cellular factories for bio-production.</description><identifier>ISSN: 1096-7176</identifier><identifier>EISSN: 1096-7184</identifier><identifier>DOI: 10.1016/j.ymben.2011.01.003</identifier><identifier>PMID: 21241816</identifier><language>eng</language><publisher>Belgium: Elsevier Inc</publisher><subject>Corynebacterium glutamicum ; Corynebacterium glutamicum - genetics ; Corynebacterium glutamicum - metabolism ; Fermentation - genetics ; Genetic Engineering ; Glucose - metabolism ; In silico design ; Industrial Microbiology - methods ; Lysine - biosynthesis ; Lysine - genetics ; Metabolic flux analysis ; Metabolic Networks and Pathways - genetics ; Models, Biological ; Rational strain optimization ; Systems biology</subject><ispartof>Metabolic engineering, 2011-03, Vol.13 (2), p.159-168</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-155c65e7b0f8052c2984a911f0da554c3548a3ec50527eeaa835ce72315c4763</citedby><cites>FETCH-LOGICAL-c414t-155c65e7b0f8052c2984a911f0da554c3548a3ec50527eeaa835ce72315c4763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymben.2011.01.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21241816$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Becker, Judith</creatorcontrib><creatorcontrib>Zelder, Oskar</creatorcontrib><creatorcontrib>Häfner, Stefan</creatorcontrib><creatorcontrib>Schröder, Hartwig</creatorcontrib><creatorcontrib>Wittmann, Christoph</creatorcontrib><title>From zero to hero—Design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production</title><title>Metabolic engineering</title><addtitle>Metab Eng</addtitle><description>Here, we describe the development of a genetically defined strain of l-lysine hyperproducing Corynebacterium glutamicum by systems metabolic engineering of the wild type. Implementation of only 12 defined genome-based changes in genes encoding central metabolic enzymes redirected major carbon fluxes as desired towards the optimal pathway usage predicted by in silico modeling. The final engineered C. glutamicum strain was able to produce lysine with a high yield of 0.55 g per gram of glucose, a titer of 120 g L −1 lysine and a productivity of 4.0 g L −1 h −1 in fed-batch culture. The specific glucose uptake rate of the wild type could be completely maintained during the engineering process, providing a highly viable producer. For these key criteria, the genetically defined strain created in this study lies at the maximum limit of classically derived producers developed over the last fifty years. This is the first report of a rationally derived lysine production strain that may be competitive with industrial applications. The design-based strategy for metabolic engineering reported here could serve as general concept for the rational development of microorganisms as efficient cellular factories for bio-production.</description><subject>Corynebacterium glutamicum</subject><subject>Corynebacterium glutamicum - genetics</subject><subject>Corynebacterium glutamicum - metabolism</subject><subject>Fermentation - genetics</subject><subject>Genetic Engineering</subject><subject>Glucose - metabolism</subject><subject>In silico design</subject><subject>Industrial Microbiology - methods</subject><subject>Lysine - biosynthesis</subject><subject>Lysine - genetics</subject><subject>Metabolic flux analysis</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Models, Biological</subject><subject>Rational strain optimization</subject><subject>Systems biology</subject><issn>1096-7176</issn><issn>1096-7184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9u1DAQxi0EoqXwBEjgG6csdhz_yYEDWiggVeJAOVuOMwlexXaxHaRw4iF4Qp4EL1t6BGmkGXl-8401H0JPKdlRQsXLw27zA4RdSyjdkRqE3UPnlPSikVR19-9qKc7Qo5wPpIK8pw_RWUvbjioqzlG5TNHj75AiLhF_qfnXj59vILs5NIPJMOK85QI-Yw_FDHFxFkOYXQBILsw4Tngf0xZgMLbUp9XjeVmL8c7WcooJL82y5crjmxTH1RYXw2P0YDJLhie3-QJdX7693r9vrj6--7B_fdXYjnaloZxbwUEOZFKEt7btVWd6SicyGs47y3inDAPLa1MCGKMYtyBbRrntpGAX6MVJtm7-ukIu2rtsYVlMgLhmrZQivRSU_5_kvCdMSVVJdiJtijknmPRNct6kTVOij7bog_5jiz7aokkNwurUs1v9dfAw3s389aECz0_AZKI2c3JZf_5UFUT1TArSHolXJwLqwb45SDpbB8HC6BLYosfo_vmF34e3qp8</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Becker, Judith</creator><creator>Zelder, Oskar</creator><creator>Häfner, Stefan</creator><creator>Schröder, Hartwig</creator><creator>Wittmann, Christoph</creator><general>Elsevier Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>7QO</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20110301</creationdate><title>From zero to hero—Design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production</title><author>Becker, Judith ; Zelder, Oskar ; Häfner, Stefan ; Schröder, Hartwig ; Wittmann, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-155c65e7b0f8052c2984a911f0da554c3548a3ec50527eeaa835ce72315c4763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Corynebacterium glutamicum</topic><topic>Corynebacterium glutamicum - genetics</topic><topic>Corynebacterium glutamicum - metabolism</topic><topic>Fermentation - genetics</topic><topic>Genetic Engineering</topic><topic>Glucose - metabolism</topic><topic>In silico design</topic><topic>Industrial Microbiology - methods</topic><topic>Lysine - biosynthesis</topic><topic>Lysine - genetics</topic><topic>Metabolic flux analysis</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Models, Biological</topic><topic>Rational strain optimization</topic><topic>Systems biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becker, Judith</creatorcontrib><creatorcontrib>Zelder, Oskar</creatorcontrib><creatorcontrib>Häfner, Stefan</creatorcontrib><creatorcontrib>Schröder, Hartwig</creatorcontrib><creatorcontrib>Wittmann, Christoph</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Metabolic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becker, Judith</au><au>Zelder, Oskar</au><au>Häfner, Stefan</au><au>Schröder, Hartwig</au><au>Wittmann, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From zero to hero—Design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production</atitle><jtitle>Metabolic engineering</jtitle><addtitle>Metab Eng</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>13</volume><issue>2</issue><spage>159</spage><epage>168</epage><pages>159-168</pages><issn>1096-7176</issn><eissn>1096-7184</eissn><abstract>Here, we describe the development of a genetically defined strain of l-lysine hyperproducing Corynebacterium glutamicum by systems metabolic engineering of the wild type. Implementation of only 12 defined genome-based changes in genes encoding central metabolic enzymes redirected major carbon fluxes as desired towards the optimal pathway usage predicted by in silico modeling. The final engineered C. glutamicum strain was able to produce lysine with a high yield of 0.55 g per gram of glucose, a titer of 120 g L −1 lysine and a productivity of 4.0 g L −1 h −1 in fed-batch culture. The specific glucose uptake rate of the wild type could be completely maintained during the engineering process, providing a highly viable producer. For these key criteria, the genetically defined strain created in this study lies at the maximum limit of classically derived producers developed over the last fifty years. This is the first report of a rationally derived lysine production strain that may be competitive with industrial applications. The design-based strategy for metabolic engineering reported here could serve as general concept for the rational development of microorganisms as efficient cellular factories for bio-production.</abstract><cop>Belgium</cop><pub>Elsevier Inc</pub><pmid>21241816</pmid><doi>10.1016/j.ymben.2011.01.003</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1096-7176
ispartof Metabolic engineering, 2011-03, Vol.13 (2), p.159-168
issn 1096-7176
1096-7184
language eng
recordid cdi_proquest_miscellaneous_888097615
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Corynebacterium glutamicum
Corynebacterium glutamicum - genetics
Corynebacterium glutamicum - metabolism
Fermentation - genetics
Genetic Engineering
Glucose - metabolism
In silico design
Industrial Microbiology - methods
Lysine - biosynthesis
Lysine - genetics
Metabolic flux analysis
Metabolic Networks and Pathways - genetics
Models, Biological
Rational strain optimization
Systems biology
title From zero to hero—Design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A59%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20zero%20to%20hero%E2%80%94Design-based%20systems%20metabolic%20engineering%20of%20Corynebacterium%20glutamicum%20for%20l-lysine%20production&rft.jtitle=Metabolic%20engineering&rft.au=Becker,%20Judith&rft.date=2011-03-01&rft.volume=13&rft.issue=2&rft.spage=159&rft.epage=168&rft.pages=159-168&rft.issn=1096-7176&rft.eissn=1096-7184&rft_id=info:doi/10.1016/j.ymben.2011.01.003&rft_dat=%3Cproquest_cross%3E855903878%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855903878&rft_id=info:pmid/21241816&rft_els_id=S1096717611000048&rfr_iscdi=true