Stability and reactivity of liposome-encapsulated formate dehydrogenase and cofactor system in carbon dioxide gas-liquid flow
Formate dehydrogenase from Candida boidinii (CbFDH) is potentially applicable in reduction of CO2 through oxidation of cofactor NADH into NAD+. For this, the CbFDH activity needs to be maintained under practical reaction conditions, such as CO2 gas‐liquid flow. In this work, CbFDH and cofactor were...
Gespeichert in:
Veröffentlicht in: | Biotechnology progress 2010-07, Vol.26 (4), p.1047-1053 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1053 |
---|---|
container_issue | 4 |
container_start_page | 1047 |
container_title | Biotechnology progress |
container_volume | 26 |
creator | Yoshimoto, Makoto Yamashita, Takayuki Yamashiro, Takuya |
description | Formate dehydrogenase from Candida boidinii (CbFDH) is potentially applicable in reduction of CO2 through oxidation of cofactor NADH into NAD+. For this, the CbFDH activity needs to be maintained under practical reaction conditions, such as CO2 gas‐liquid flow. In this work, CbFDH and cofactor were encapsulated in liposomes and the liposomal enzymes were characterized in an external loop airlift bubble column. The airlift was operated at 45°C with N2 or CO2 as gas phase at the superficial gas velocity UG of 2.0 or 3.0 cm/s. The activities of liposomal CbFDH/cofactor systems were highly stable in the airlift regardless of the type of gas phase because liposome membranes prevented interactions of the encapsulated enzyme and cofactor molecules with the gas‐liquid interface of bubbles. On the other hand, free CbFDH was deactivated in the airlift especially at high UG with CO2 bubbles. The liposomal CbFDH/NADH could catalyze reduction of CO2 in the airlift giving the fractional oxidation of the liposomal NADH of 23% at the reaction time of 360 min. The cofactor was kept inside liposomes during the reaction operation with less than 10% of leakage. All of the results obtained demonstrate that the liposomal CbFDH/NADH functions as a stable catalyst for reduction of CO2 in the airlift. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010 |
doi_str_mv | 10.1002/btpr.409 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_888096278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>888096278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5189-f3517415ef395b8cc23c729d1a1570fe44e42261d5f3bf75245f2ca8ca24acd13</originalsourceid><addsrcrecordid>eNqF0ctu1DAUBuAIgei0IPEEyBsEmxRf4tsSWpgiFaigwNJyfCkGJ07tpG0WvDsZZigr1JWPpe_8Z_FX1RMEDxGE-GU7DvmwgfJetUIUw5pBQu5XK8Epq7kkYq_aL-UHhFBAhh9WexhyAjlDq-rX51G3IYZxBrq3IDttxnC1-SYPYhhSSZ2rXW_0UKaoR2eBT7lbBmDd99nmdOF6XdyfbZP8sp4yKHMZXQdCD4zObeqBDekmWAcudKljuJzCEhPT9aPqgdexuMe796D68vbN-dFJffpx_e7o1WltKBKy9oQi3iDqPJG0FcZgYjiWFmlEOfSuaVyDMUOWetJ6TnFDPTZaGI0bbSwiB9Xzbe6Q0-Xkyqi6UIyLUfcuTUUJIaBkmIu7JZNUQkHknZI3QnLEJFnki600OZWSnVdDDp3Os0JQbfpTm_7U0t9Cn-5Cp7Zz9hb-LWwBz3ZAF6Ojz7o3ofxzBFEmIV5cvXXXIbr5vwfV6_OzT9vDOx-W5m5uvc4_FeOEU_Xtw1odr-n65Pj9V3VGfgMa0cKy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>748971693</pqid></control><display><type>article</type><title>Stability and reactivity of liposome-encapsulated formate dehydrogenase and cofactor system in carbon dioxide gas-liquid flow</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yoshimoto, Makoto ; Yamashita, Takayuki ; Yamashiro, Takuya</creator><creatorcontrib>Yoshimoto, Makoto ; Yamashita, Takayuki ; Yamashiro, Takuya</creatorcontrib><description>Formate dehydrogenase from Candida boidinii (CbFDH) is potentially applicable in reduction of CO2 through oxidation of cofactor NADH into NAD+. For this, the CbFDH activity needs to be maintained under practical reaction conditions, such as CO2 gas‐liquid flow. In this work, CbFDH and cofactor were encapsulated in liposomes and the liposomal enzymes were characterized in an external loop airlift bubble column. The airlift was operated at 45°C with N2 or CO2 as gas phase at the superficial gas velocity UG of 2.0 or 3.0 cm/s. The activities of liposomal CbFDH/cofactor systems were highly stable in the airlift regardless of the type of gas phase because liposome membranes prevented interactions of the encapsulated enzyme and cofactor molecules with the gas‐liquid interface of bubbles. On the other hand, free CbFDH was deactivated in the airlift especially at high UG with CO2 bubbles. The liposomal CbFDH/NADH could catalyze reduction of CO2 in the airlift giving the fractional oxidation of the liposomal NADH of 23% at the reaction time of 360 min. The cofactor was kept inside liposomes during the reaction operation with less than 10% of leakage. All of the results obtained demonstrate that the liposomal CbFDH/NADH functions as a stable catalyst for reduction of CO2 in the airlift. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010</description><identifier>ISSN: 8756-7938</identifier><identifier>ISSN: 1520-6033</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1002/btpr.409</identifier><identifier>PMID: 20730761</identifier><identifier>CODEN: BIPRET</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Biological and medical sciences ; Biotechnology ; Candida - enzymology ; Candida boidinii ; Carbon Dioxide - chemistry ; carbon dioxide reduction ; cofactor ; Enzyme Stability ; formate dehydrogenase ; Formate Dehydrogenases - chemistry ; Formate Dehydrogenases - metabolism ; Fundamental and applied biological sciences. Psychology ; gas-liquid flow ; liposomes ; Liposomes - chemistry</subject><ispartof>Biotechnology progress, 2010-07, Vol.26 (4), p.1047-1053</ispartof><rights>Copyright © 2010 American Institute of Chemical Engineers (AIChE)</rights><rights>2015 INIST-CNRS</rights><rights>(c) 2010 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5189-f3517415ef395b8cc23c729d1a1570fe44e42261d5f3bf75245f2ca8ca24acd13</citedby><cites>FETCH-LOGICAL-c5189-f3517415ef395b8cc23c729d1a1570fe44e42261d5f3bf75245f2ca8ca24acd13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbtpr.409$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbtpr.409$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23156902$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20730761$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshimoto, Makoto</creatorcontrib><creatorcontrib>Yamashita, Takayuki</creatorcontrib><creatorcontrib>Yamashiro, Takuya</creatorcontrib><title>Stability and reactivity of liposome-encapsulated formate dehydrogenase and cofactor system in carbon dioxide gas-liquid flow</title><title>Biotechnology progress</title><addtitle>Biotechnol Progress</addtitle><description>Formate dehydrogenase from Candida boidinii (CbFDH) is potentially applicable in reduction of CO2 through oxidation of cofactor NADH into NAD+. For this, the CbFDH activity needs to be maintained under practical reaction conditions, such as CO2 gas‐liquid flow. In this work, CbFDH and cofactor were encapsulated in liposomes and the liposomal enzymes were characterized in an external loop airlift bubble column. The airlift was operated at 45°C with N2 or CO2 as gas phase at the superficial gas velocity UG of 2.0 or 3.0 cm/s. The activities of liposomal CbFDH/cofactor systems were highly stable in the airlift regardless of the type of gas phase because liposome membranes prevented interactions of the encapsulated enzyme and cofactor molecules with the gas‐liquid interface of bubbles. On the other hand, free CbFDH was deactivated in the airlift especially at high UG with CO2 bubbles. The liposomal CbFDH/NADH could catalyze reduction of CO2 in the airlift giving the fractional oxidation of the liposomal NADH of 23% at the reaction time of 360 min. The cofactor was kept inside liposomes during the reaction operation with less than 10% of leakage. All of the results obtained demonstrate that the liposomal CbFDH/NADH functions as a stable catalyst for reduction of CO2 in the airlift. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010</description><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Candida - enzymology</subject><subject>Candida boidinii</subject><subject>Carbon Dioxide - chemistry</subject><subject>carbon dioxide reduction</subject><subject>cofactor</subject><subject>Enzyme Stability</subject><subject>formate dehydrogenase</subject><subject>Formate Dehydrogenases - chemistry</subject><subject>Formate Dehydrogenases - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gas-liquid flow</subject><subject>liposomes</subject><subject>Liposomes - chemistry</subject><issn>8756-7938</issn><issn>1520-6033</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0ctu1DAUBuAIgei0IPEEyBsEmxRf4tsSWpgiFaigwNJyfCkGJ07tpG0WvDsZZigr1JWPpe_8Z_FX1RMEDxGE-GU7DvmwgfJetUIUw5pBQu5XK8Epq7kkYq_aL-UHhFBAhh9WexhyAjlDq-rX51G3IYZxBrq3IDttxnC1-SYPYhhSSZ2rXW_0UKaoR2eBT7lbBmDd99nmdOF6XdyfbZP8sp4yKHMZXQdCD4zObeqBDekmWAcudKljuJzCEhPT9aPqgdexuMe796D68vbN-dFJffpx_e7o1WltKBKy9oQi3iDqPJG0FcZgYjiWFmlEOfSuaVyDMUOWetJ6TnFDPTZaGI0bbSwiB9Xzbe6Q0-Xkyqi6UIyLUfcuTUUJIaBkmIu7JZNUQkHknZI3QnLEJFnki600OZWSnVdDDp3Os0JQbfpTm_7U0t9Cn-5Cp7Zz9hb-LWwBz3ZAF6Ojz7o3ofxzBFEmIV5cvXXXIbr5vwfV6_OzT9vDOx-W5m5uvc4_FeOEU_Xtw1odr-n65Pj9V3VGfgMa0cKy</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Yoshimoto, Makoto</creator><creator>Yamashita, Takayuki</creator><creator>Yamashiro, Takuya</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201007</creationdate><title>Stability and reactivity of liposome-encapsulated formate dehydrogenase and cofactor system in carbon dioxide gas-liquid flow</title><author>Yoshimoto, Makoto ; Yamashita, Takayuki ; Yamashiro, Takuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5189-f3517415ef395b8cc23c729d1a1570fe44e42261d5f3bf75245f2ca8ca24acd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Candida - enzymology</topic><topic>Candida boidinii</topic><topic>Carbon Dioxide - chemistry</topic><topic>carbon dioxide reduction</topic><topic>cofactor</topic><topic>Enzyme Stability</topic><topic>formate dehydrogenase</topic><topic>Formate Dehydrogenases - chemistry</topic><topic>Formate Dehydrogenases - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gas-liquid flow</topic><topic>liposomes</topic><topic>Liposomes - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshimoto, Makoto</creatorcontrib><creatorcontrib>Yamashita, Takayuki</creatorcontrib><creatorcontrib>Yamashiro, Takuya</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshimoto, Makoto</au><au>Yamashita, Takayuki</au><au>Yamashiro, Takuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and reactivity of liposome-encapsulated formate dehydrogenase and cofactor system in carbon dioxide gas-liquid flow</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Progress</addtitle><date>2010-07</date><risdate>2010</risdate><volume>26</volume><issue>4</issue><spage>1047</spage><epage>1053</epage><pages>1047-1053</pages><issn>8756-7938</issn><issn>1520-6033</issn><eissn>1520-6033</eissn><coden>BIPRET</coden><abstract>Formate dehydrogenase from Candida boidinii (CbFDH) is potentially applicable in reduction of CO2 through oxidation of cofactor NADH into NAD+. For this, the CbFDH activity needs to be maintained under practical reaction conditions, such as CO2 gas‐liquid flow. In this work, CbFDH and cofactor were encapsulated in liposomes and the liposomal enzymes were characterized in an external loop airlift bubble column. The airlift was operated at 45°C with N2 or CO2 as gas phase at the superficial gas velocity UG of 2.0 or 3.0 cm/s. The activities of liposomal CbFDH/cofactor systems were highly stable in the airlift regardless of the type of gas phase because liposome membranes prevented interactions of the encapsulated enzyme and cofactor molecules with the gas‐liquid interface of bubbles. On the other hand, free CbFDH was deactivated in the airlift especially at high UG with CO2 bubbles. The liposomal CbFDH/NADH could catalyze reduction of CO2 in the airlift giving the fractional oxidation of the liposomal NADH of 23% at the reaction time of 360 min. The cofactor was kept inside liposomes during the reaction operation with less than 10% of leakage. All of the results obtained demonstrate that the liposomal CbFDH/NADH functions as a stable catalyst for reduction of CO2 in the airlift. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>20730761</pmid><doi>10.1002/btpr.409</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-7938 |
ispartof | Biotechnology progress, 2010-07, Vol.26 (4), p.1047-1053 |
issn | 8756-7938 1520-6033 1520-6033 |
language | eng |
recordid | cdi_proquest_miscellaneous_888096278 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Biological and medical sciences Biotechnology Candida - enzymology Candida boidinii Carbon Dioxide - chemistry carbon dioxide reduction cofactor Enzyme Stability formate dehydrogenase Formate Dehydrogenases - chemistry Formate Dehydrogenases - metabolism Fundamental and applied biological sciences. Psychology gas-liquid flow liposomes Liposomes - chemistry |
title | Stability and reactivity of liposome-encapsulated formate dehydrogenase and cofactor system in carbon dioxide gas-liquid flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A35%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20reactivity%20of%20liposome-encapsulated%20formate%20dehydrogenase%20and%20cofactor%20system%20in%20carbon%20dioxide%20gas-liquid%20flow&rft.jtitle=Biotechnology%20progress&rft.au=Yoshimoto,%20Makoto&rft.date=2010-07&rft.volume=26&rft.issue=4&rft.spage=1047&rft.epage=1053&rft.pages=1047-1053&rft.issn=8756-7938&rft.eissn=1520-6033&rft.coden=BIPRET&rft_id=info:doi/10.1002/btpr.409&rft_dat=%3Cproquest_cross%3E888096278%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=748971693&rft_id=info:pmid/20730761&rfr_iscdi=true |