Stability and reactivity of liposome-encapsulated formate dehydrogenase and cofactor system in carbon dioxide gas-liquid flow

Formate dehydrogenase from Candida boidinii (CbFDH) is potentially applicable in reduction of CO2 through oxidation of cofactor NADH into NAD+. For this, the CbFDH activity needs to be maintained under practical reaction conditions, such as CO2 gas‐liquid flow. In this work, CbFDH and cofactor were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology progress 2010-07, Vol.26 (4), p.1047-1053
Hauptverfasser: Yoshimoto, Makoto, Yamashita, Takayuki, Yamashiro, Takuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1053
container_issue 4
container_start_page 1047
container_title Biotechnology progress
container_volume 26
creator Yoshimoto, Makoto
Yamashita, Takayuki
Yamashiro, Takuya
description Formate dehydrogenase from Candida boidinii (CbFDH) is potentially applicable in reduction of CO2 through oxidation of cofactor NADH into NAD+. For this, the CbFDH activity needs to be maintained under practical reaction conditions, such as CO2 gas‐liquid flow. In this work, CbFDH and cofactor were encapsulated in liposomes and the liposomal enzymes were characterized in an external loop airlift bubble column. The airlift was operated at 45°C with N2 or CO2 as gas phase at the superficial gas velocity UG of 2.0 or 3.0 cm/s. The activities of liposomal CbFDH/cofactor systems were highly stable in the airlift regardless of the type of gas phase because liposome membranes prevented interactions of the encapsulated enzyme and cofactor molecules with the gas‐liquid interface of bubbles. On the other hand, free CbFDH was deactivated in the airlift especially at high UG with CO2 bubbles. The liposomal CbFDH/NADH could catalyze reduction of CO2 in the airlift giving the fractional oxidation of the liposomal NADH of 23% at the reaction time of 360 min. The cofactor was kept inside liposomes during the reaction operation with less than 10% of leakage. All of the results obtained demonstrate that the liposomal CbFDH/NADH functions as a stable catalyst for reduction of CO2 in the airlift. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010
doi_str_mv 10.1002/btpr.409
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_888096278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>888096278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5189-f3517415ef395b8cc23c729d1a1570fe44e42261d5f3bf75245f2ca8ca24acd13</originalsourceid><addsrcrecordid>eNqF0ctu1DAUBuAIgei0IPEEyBsEmxRf4tsSWpgiFaigwNJyfCkGJ07tpG0WvDsZZigr1JWPpe_8Z_FX1RMEDxGE-GU7DvmwgfJetUIUw5pBQu5XK8Epq7kkYq_aL-UHhFBAhh9WexhyAjlDq-rX51G3IYZxBrq3IDttxnC1-SYPYhhSSZ2rXW_0UKaoR2eBT7lbBmDd99nmdOF6XdyfbZP8sp4yKHMZXQdCD4zObeqBDekmWAcudKljuJzCEhPT9aPqgdexuMe796D68vbN-dFJffpx_e7o1WltKBKy9oQi3iDqPJG0FcZgYjiWFmlEOfSuaVyDMUOWetJ6TnFDPTZaGI0bbSwiB9Xzbe6Q0-Xkyqi6UIyLUfcuTUUJIaBkmIu7JZNUQkHknZI3QnLEJFnki600OZWSnVdDDp3Os0JQbfpTm_7U0t9Cn-5Cp7Zz9hb-LWwBz3ZAF6Ojz7o3ofxzBFEmIV5cvXXXIbr5vwfV6_OzT9vDOx-W5m5uvc4_FeOEU_Xtw1odr-n65Pj9V3VGfgMa0cKy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>748971693</pqid></control><display><type>article</type><title>Stability and reactivity of liposome-encapsulated formate dehydrogenase and cofactor system in carbon dioxide gas-liquid flow</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yoshimoto, Makoto ; Yamashita, Takayuki ; Yamashiro, Takuya</creator><creatorcontrib>Yoshimoto, Makoto ; Yamashita, Takayuki ; Yamashiro, Takuya</creatorcontrib><description>Formate dehydrogenase from Candida boidinii (CbFDH) is potentially applicable in reduction of CO2 through oxidation of cofactor NADH into NAD+. For this, the CbFDH activity needs to be maintained under practical reaction conditions, such as CO2 gas‐liquid flow. In this work, CbFDH and cofactor were encapsulated in liposomes and the liposomal enzymes were characterized in an external loop airlift bubble column. The airlift was operated at 45°C with N2 or CO2 as gas phase at the superficial gas velocity UG of 2.0 or 3.0 cm/s. The activities of liposomal CbFDH/cofactor systems were highly stable in the airlift regardless of the type of gas phase because liposome membranes prevented interactions of the encapsulated enzyme and cofactor molecules with the gas‐liquid interface of bubbles. On the other hand, free CbFDH was deactivated in the airlift especially at high UG with CO2 bubbles. The liposomal CbFDH/NADH could catalyze reduction of CO2 in the airlift giving the fractional oxidation of the liposomal NADH of 23% at the reaction time of 360 min. The cofactor was kept inside liposomes during the reaction operation with less than 10% of leakage. All of the results obtained demonstrate that the liposomal CbFDH/NADH functions as a stable catalyst for reduction of CO2 in the airlift. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010</description><identifier>ISSN: 8756-7938</identifier><identifier>ISSN: 1520-6033</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1002/btpr.409</identifier><identifier>PMID: 20730761</identifier><identifier>CODEN: BIPRET</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Biological and medical sciences ; Biotechnology ; Candida - enzymology ; Candida boidinii ; Carbon Dioxide - chemistry ; carbon dioxide reduction ; cofactor ; Enzyme Stability ; formate dehydrogenase ; Formate Dehydrogenases - chemistry ; Formate Dehydrogenases - metabolism ; Fundamental and applied biological sciences. Psychology ; gas-liquid flow ; liposomes ; Liposomes - chemistry</subject><ispartof>Biotechnology progress, 2010-07, Vol.26 (4), p.1047-1053</ispartof><rights>Copyright © 2010 American Institute of Chemical Engineers (AIChE)</rights><rights>2015 INIST-CNRS</rights><rights>(c) 2010 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5189-f3517415ef395b8cc23c729d1a1570fe44e42261d5f3bf75245f2ca8ca24acd13</citedby><cites>FETCH-LOGICAL-c5189-f3517415ef395b8cc23c729d1a1570fe44e42261d5f3bf75245f2ca8ca24acd13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbtpr.409$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbtpr.409$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23156902$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20730761$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshimoto, Makoto</creatorcontrib><creatorcontrib>Yamashita, Takayuki</creatorcontrib><creatorcontrib>Yamashiro, Takuya</creatorcontrib><title>Stability and reactivity of liposome-encapsulated formate dehydrogenase and cofactor system in carbon dioxide gas-liquid flow</title><title>Biotechnology progress</title><addtitle>Biotechnol Progress</addtitle><description>Formate dehydrogenase from Candida boidinii (CbFDH) is potentially applicable in reduction of CO2 through oxidation of cofactor NADH into NAD+. For this, the CbFDH activity needs to be maintained under practical reaction conditions, such as CO2 gas‐liquid flow. In this work, CbFDH and cofactor were encapsulated in liposomes and the liposomal enzymes were characterized in an external loop airlift bubble column. The airlift was operated at 45°C with N2 or CO2 as gas phase at the superficial gas velocity UG of 2.0 or 3.0 cm/s. The activities of liposomal CbFDH/cofactor systems were highly stable in the airlift regardless of the type of gas phase because liposome membranes prevented interactions of the encapsulated enzyme and cofactor molecules with the gas‐liquid interface of bubbles. On the other hand, free CbFDH was deactivated in the airlift especially at high UG with CO2 bubbles. The liposomal CbFDH/NADH could catalyze reduction of CO2 in the airlift giving the fractional oxidation of the liposomal NADH of 23% at the reaction time of 360 min. The cofactor was kept inside liposomes during the reaction operation with less than 10% of leakage. All of the results obtained demonstrate that the liposomal CbFDH/NADH functions as a stable catalyst for reduction of CO2 in the airlift. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010</description><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Candida - enzymology</subject><subject>Candida boidinii</subject><subject>Carbon Dioxide - chemistry</subject><subject>carbon dioxide reduction</subject><subject>cofactor</subject><subject>Enzyme Stability</subject><subject>formate dehydrogenase</subject><subject>Formate Dehydrogenases - chemistry</subject><subject>Formate Dehydrogenases - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gas-liquid flow</subject><subject>liposomes</subject><subject>Liposomes - chemistry</subject><issn>8756-7938</issn><issn>1520-6033</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0ctu1DAUBuAIgei0IPEEyBsEmxRf4tsSWpgiFaigwNJyfCkGJ07tpG0WvDsZZigr1JWPpe_8Z_FX1RMEDxGE-GU7DvmwgfJetUIUw5pBQu5XK8Epq7kkYq_aL-UHhFBAhh9WexhyAjlDq-rX51G3IYZxBrq3IDttxnC1-SYPYhhSSZ2rXW_0UKaoR2eBT7lbBmDd99nmdOF6XdyfbZP8sp4yKHMZXQdCD4zObeqBDekmWAcudKljuJzCEhPT9aPqgdexuMe796D68vbN-dFJffpx_e7o1WltKBKy9oQi3iDqPJG0FcZgYjiWFmlEOfSuaVyDMUOWetJ6TnFDPTZaGI0bbSwiB9Xzbe6Q0-Xkyqi6UIyLUfcuTUUJIaBkmIu7JZNUQkHknZI3QnLEJFnki600OZWSnVdDDp3Os0JQbfpTm_7U0t9Cn-5Cp7Zz9hb-LWwBz3ZAF6Ojz7o3ofxzBFEmIV5cvXXXIbr5vwfV6_OzT9vDOx-W5m5uvc4_FeOEU_Xtw1odr-n65Pj9V3VGfgMa0cKy</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Yoshimoto, Makoto</creator><creator>Yamashita, Takayuki</creator><creator>Yamashiro, Takuya</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201007</creationdate><title>Stability and reactivity of liposome-encapsulated formate dehydrogenase and cofactor system in carbon dioxide gas-liquid flow</title><author>Yoshimoto, Makoto ; Yamashita, Takayuki ; Yamashiro, Takuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5189-f3517415ef395b8cc23c729d1a1570fe44e42261d5f3bf75245f2ca8ca24acd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Candida - enzymology</topic><topic>Candida boidinii</topic><topic>Carbon Dioxide - chemistry</topic><topic>carbon dioxide reduction</topic><topic>cofactor</topic><topic>Enzyme Stability</topic><topic>formate dehydrogenase</topic><topic>Formate Dehydrogenases - chemistry</topic><topic>Formate Dehydrogenases - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gas-liquid flow</topic><topic>liposomes</topic><topic>Liposomes - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshimoto, Makoto</creatorcontrib><creatorcontrib>Yamashita, Takayuki</creatorcontrib><creatorcontrib>Yamashiro, Takuya</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshimoto, Makoto</au><au>Yamashita, Takayuki</au><au>Yamashiro, Takuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and reactivity of liposome-encapsulated formate dehydrogenase and cofactor system in carbon dioxide gas-liquid flow</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Progress</addtitle><date>2010-07</date><risdate>2010</risdate><volume>26</volume><issue>4</issue><spage>1047</spage><epage>1053</epage><pages>1047-1053</pages><issn>8756-7938</issn><issn>1520-6033</issn><eissn>1520-6033</eissn><coden>BIPRET</coden><abstract>Formate dehydrogenase from Candida boidinii (CbFDH) is potentially applicable in reduction of CO2 through oxidation of cofactor NADH into NAD+. For this, the CbFDH activity needs to be maintained under practical reaction conditions, such as CO2 gas‐liquid flow. In this work, CbFDH and cofactor were encapsulated in liposomes and the liposomal enzymes were characterized in an external loop airlift bubble column. The airlift was operated at 45°C with N2 or CO2 as gas phase at the superficial gas velocity UG of 2.0 or 3.0 cm/s. The activities of liposomal CbFDH/cofactor systems were highly stable in the airlift regardless of the type of gas phase because liposome membranes prevented interactions of the encapsulated enzyme and cofactor molecules with the gas‐liquid interface of bubbles. On the other hand, free CbFDH was deactivated in the airlift especially at high UG with CO2 bubbles. The liposomal CbFDH/NADH could catalyze reduction of CO2 in the airlift giving the fractional oxidation of the liposomal NADH of 23% at the reaction time of 360 min. The cofactor was kept inside liposomes during the reaction operation with less than 10% of leakage. All of the results obtained demonstrate that the liposomal CbFDH/NADH functions as a stable catalyst for reduction of CO2 in the airlift. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>20730761</pmid><doi>10.1002/btpr.409</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 8756-7938
ispartof Biotechnology progress, 2010-07, Vol.26 (4), p.1047-1053
issn 8756-7938
1520-6033
1520-6033
language eng
recordid cdi_proquest_miscellaneous_888096278
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Biological and medical sciences
Biotechnology
Candida - enzymology
Candida boidinii
Carbon Dioxide - chemistry
carbon dioxide reduction
cofactor
Enzyme Stability
formate dehydrogenase
Formate Dehydrogenases - chemistry
Formate Dehydrogenases - metabolism
Fundamental and applied biological sciences. Psychology
gas-liquid flow
liposomes
Liposomes - chemistry
title Stability and reactivity of liposome-encapsulated formate dehydrogenase and cofactor system in carbon dioxide gas-liquid flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A35%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20reactivity%20of%20liposome-encapsulated%20formate%20dehydrogenase%20and%20cofactor%20system%20in%20carbon%20dioxide%20gas-liquid%20flow&rft.jtitle=Biotechnology%20progress&rft.au=Yoshimoto,%20Makoto&rft.date=2010-07&rft.volume=26&rft.issue=4&rft.spage=1047&rft.epage=1053&rft.pages=1047-1053&rft.issn=8756-7938&rft.eissn=1520-6033&rft.coden=BIPRET&rft_id=info:doi/10.1002/btpr.409&rft_dat=%3Cproquest_cross%3E888096278%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=748971693&rft_id=info:pmid/20730761&rfr_iscdi=true