Genome-derived minimal metabolic models for Escherichia coli MG1655 with estimated in vivo respiratory ATP stoichiometry

Metabolic network models describing growth of Escherichia coli on glucose, glycerol and acetate were derived from a genome scale model of E. coli. One of the uncertainties in the metabolic networks is the exact stoichiometry of energy generating and consuming processes. Accurate estimation of biomas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2010-10, Vol.107 (2), p.369-381
Hauptverfasser: Taymaz-Nikerel, Hilal, Borujeni, Amin Espah, Verheijen, Peter J.T, Heijnen, Joseph J, van Gulik, Walter M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 381
container_issue 2
container_start_page 369
container_title Biotechnology and bioengineering
container_volume 107
creator Taymaz-Nikerel, Hilal
Borujeni, Amin Espah
Verheijen, Peter J.T
Heijnen, Joseph J
van Gulik, Walter M
description Metabolic network models describing growth of Escherichia coli on glucose, glycerol and acetate were derived from a genome scale model of E. coli. One of the uncertainties in the metabolic networks is the exact stoichiometry of energy generating and consuming processes. Accurate estimation of biomass and product yields requires correct information on the ATP stoichiometry. The unknown ATP stoichiometry parameters of the constructed E. coli network were estimated from experimental data of eight different aerobic chemostat experiments carried out with E. coli MG1655, grown at different dilution rates (0.025, 0.05, 0.1, and 0.3 h⁻¹) and on different carbon substrates (glucose, glycerol, and acetate). Proper estimation of the ATP stoichiometry requires proper information on the biomass composition of the organism as well as accurate assessment of net conversion rates under well-defined conditions. For this purpose a growth rate dependent biomass composition was derived, based on measurements and literature data. After incorporation of the growth rate dependent biomass composition in a metabolic network model, an effective P/O ratio of 1.49 ± 0.26 mol of ATP/mol of O, KX (growth dependent maintenance) of 0.46 ± 0.27 mol of ATP/C-mol of biomass and mATP (growth independent maintenance) of 0.075 ± 0.015 mol of ATP/C-mol of biomass/h were estimated using a newly developed Comprehensive Data Reconciliation (CDR) method, assuming that the three energetic parameters were independent of the growth rate and the used substrate. The resulting metabolic network model only requires the specific rate of growth, μ, as an input in order to accurately predict all other fluxes and yields. Biotechnol. Bioeng. 2010;107: 369-381.
doi_str_mv 10.1002/bit.22802
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_888096053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2122200781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4752-6047569276fe6c0f224c506d384659fab4c04ba3f3e123e9cbae1d76e063c88e3</originalsourceid><addsrcrecordid>eNqFkV1v0zAUhiMEYmNwwR8ACwkhLrId24ntXI5qlEnjQ6xjEjeW4zjUWxIXO-3Wf88p7YaEhLg6svy87_l4s-w5hUMKwI5qPx4ypoA9yPYpVDIHVsHDbB8ARM7Liu1lT1K6wqdUQjzO9hiUIDij-9nt1A2hd3njol-5hvR-8L3pSO9GU4fOW9KHxnWJtCGSk2TnyNm5N8TiJ_k4paIsyY0f58SlEZUjeviBrPwqkOjSwkczhrgmx7MvJI1ho8V2Y1w_zR61pkvu2a4eZBfvT2aTD_nZ5-np5Pgst4UsWS4Ai6iYFK0TFlrGCouzN1wVoqxaUxcWitrwljvKuKtsbRxtpHC4n1XK8YPszdZ3EcPPJQ6pe5-s6zozuLBMWikFlYCS_5eUharwrkIg-eov8ios44BrIIRTK0E3dm-3kI0hpehavYh4oLjWFPQmNo2x6d-xIftiZ7ise9fck3c5IfB6B5hkTddGM1if_nDIMC43Rkdb7sZ3bv3vjvrd6eyudb5V-DS623uFiddaSC5LfflpquXX2eXkG5zr78i_3PKtCdr8iDjFxTkDyoEqqSQH_gtCysXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>747528613</pqid></control><display><type>article</type><title>Genome-derived minimal metabolic models for Escherichia coli MG1655 with estimated in vivo respiratory ATP stoichiometry</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Taymaz-Nikerel, Hilal ; Borujeni, Amin Espah ; Verheijen, Peter J.T ; Heijnen, Joseph J ; van Gulik, Walter M</creator><creatorcontrib>Taymaz-Nikerel, Hilal ; Borujeni, Amin Espah ; Verheijen, Peter J.T ; Heijnen, Joseph J ; van Gulik, Walter M</creatorcontrib><description>Metabolic network models describing growth of Escherichia coli on glucose, glycerol and acetate were derived from a genome scale model of E. coli. One of the uncertainties in the metabolic networks is the exact stoichiometry of energy generating and consuming processes. Accurate estimation of biomass and product yields requires correct information on the ATP stoichiometry. The unknown ATP stoichiometry parameters of the constructed E. coli network were estimated from experimental data of eight different aerobic chemostat experiments carried out with E. coli MG1655, grown at different dilution rates (0.025, 0.05, 0.1, and 0.3 h⁻¹) and on different carbon substrates (glucose, glycerol, and acetate). Proper estimation of the ATP stoichiometry requires proper information on the biomass composition of the organism as well as accurate assessment of net conversion rates under well-defined conditions. For this purpose a growth rate dependent biomass composition was derived, based on measurements and literature data. After incorporation of the growth rate dependent biomass composition in a metabolic network model, an effective P/O ratio of 1.49 ± 0.26 mol of ATP/mol of O, KX (growth dependent maintenance) of 0.46 ± 0.27 mol of ATP/C-mol of biomass and mATP (growth independent maintenance) of 0.075 ± 0.015 mol of ATP/C-mol of biomass/h were estimated using a newly developed Comprehensive Data Reconciliation (CDR) method, assuming that the three energetic parameters were independent of the growth rate and the used substrate. The resulting metabolic network model only requires the specific rate of growth, μ, as an input in order to accurately predict all other fluxes and yields. Biotechnol. Bioeng. 2010;107: 369-381.</description><identifier>ISSN: 0006-3592</identifier><identifier>ISSN: 1097-0290</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.22802</identifier><identifier>PMID: 20506321</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Acetic Acid - metabolism ; Adenosine triphosphatase ; Adenosine Triphosphate - metabolism ; Biological and medical sciences ; Biomass ; Biotechnology ; Cell growth ; E coli ; energetics ; Energy Metabolism - genetics ; Escherichia coli ; Escherichia coli K12 - genetics ; Escherichia coli K12 - metabolism ; Fundamental and applied biological sciences. Psychology ; Genome, Bacterial ; Glucose ; Glucose - metabolism ; Glycerol - metabolism ; Herbert-Pirt relations ; maintenance ; Metabolism ; Models, Biological ; P/O ratio ; stoichiometric metabolic model</subject><ispartof>Biotechnology and bioengineering, 2010-10, Vol.107 (2), p.369-381</ispartof><rights>Copyright © 2010 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright John Wiley and Sons, Limited Oct 1, 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4752-6047569276fe6c0f224c506d384659fab4c04ba3f3e123e9cbae1d76e063c88e3</citedby><cites>FETCH-LOGICAL-c4752-6047569276fe6c0f224c506d384659fab4c04ba3f3e123e9cbae1d76e063c88e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.22802$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.22802$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23212372$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20506321$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taymaz-Nikerel, Hilal</creatorcontrib><creatorcontrib>Borujeni, Amin Espah</creatorcontrib><creatorcontrib>Verheijen, Peter J.T</creatorcontrib><creatorcontrib>Heijnen, Joseph J</creatorcontrib><creatorcontrib>van Gulik, Walter M</creatorcontrib><title>Genome-derived minimal metabolic models for Escherichia coli MG1655 with estimated in vivo respiratory ATP stoichiometry</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>Metabolic network models describing growth of Escherichia coli on glucose, glycerol and acetate were derived from a genome scale model of E. coli. One of the uncertainties in the metabolic networks is the exact stoichiometry of energy generating and consuming processes. Accurate estimation of biomass and product yields requires correct information on the ATP stoichiometry. The unknown ATP stoichiometry parameters of the constructed E. coli network were estimated from experimental data of eight different aerobic chemostat experiments carried out with E. coli MG1655, grown at different dilution rates (0.025, 0.05, 0.1, and 0.3 h⁻¹) and on different carbon substrates (glucose, glycerol, and acetate). Proper estimation of the ATP stoichiometry requires proper information on the biomass composition of the organism as well as accurate assessment of net conversion rates under well-defined conditions. For this purpose a growth rate dependent biomass composition was derived, based on measurements and literature data. After incorporation of the growth rate dependent biomass composition in a metabolic network model, an effective P/O ratio of 1.49 ± 0.26 mol of ATP/mol of O, KX (growth dependent maintenance) of 0.46 ± 0.27 mol of ATP/C-mol of biomass and mATP (growth independent maintenance) of 0.075 ± 0.015 mol of ATP/C-mol of biomass/h were estimated using a newly developed Comprehensive Data Reconciliation (CDR) method, assuming that the three energetic parameters were independent of the growth rate and the used substrate. The resulting metabolic network model only requires the specific rate of growth, μ, as an input in order to accurately predict all other fluxes and yields. Biotechnol. Bioeng. 2010;107: 369-381.</description><subject>Acetic Acid - metabolism</subject><subject>Adenosine triphosphatase</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>Biotechnology</subject><subject>Cell growth</subject><subject>E coli</subject><subject>energetics</subject><subject>Energy Metabolism - genetics</subject><subject>Escherichia coli</subject><subject>Escherichia coli K12 - genetics</subject><subject>Escherichia coli K12 - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genome, Bacterial</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glycerol - metabolism</subject><subject>Herbert-Pirt relations</subject><subject>maintenance</subject><subject>Metabolism</subject><subject>Models, Biological</subject><subject>P/O ratio</subject><subject>stoichiometric metabolic model</subject><issn>0006-3592</issn><issn>1097-0290</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV1v0zAUhiMEYmNwwR8ACwkhLrId24ntXI5qlEnjQ6xjEjeW4zjUWxIXO-3Wf88p7YaEhLg6svy87_l4s-w5hUMKwI5qPx4ypoA9yPYpVDIHVsHDbB8ARM7Liu1lT1K6wqdUQjzO9hiUIDij-9nt1A2hd3njol-5hvR-8L3pSO9GU4fOW9KHxnWJtCGSk2TnyNm5N8TiJ_k4paIsyY0f58SlEZUjeviBrPwqkOjSwkczhrgmx7MvJI1ho8V2Y1w_zR61pkvu2a4eZBfvT2aTD_nZ5-np5Pgst4UsWS4Ai6iYFK0TFlrGCouzN1wVoqxaUxcWitrwljvKuKtsbRxtpHC4n1XK8YPszdZ3EcPPJQ6pe5-s6zozuLBMWikFlYCS_5eUharwrkIg-eov8ios44BrIIRTK0E3dm-3kI0hpehavYh4oLjWFPQmNo2x6d-xIftiZ7ise9fck3c5IfB6B5hkTddGM1if_nDIMC43Rkdb7sZ3bv3vjvrd6eyudb5V-DS623uFiddaSC5LfflpquXX2eXkG5zr78i_3PKtCdr8iDjFxTkDyoEqqSQH_gtCysXg</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Taymaz-Nikerel, Hilal</creator><creator>Borujeni, Amin Espah</creator><creator>Verheijen, Peter J.T</creator><creator>Heijnen, Joseph J</creator><creator>van Gulik, Walter M</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>7QL</scope><scope>RC3</scope></search><sort><creationdate>20101001</creationdate><title>Genome-derived minimal metabolic models for Escherichia coli MG1655 with estimated in vivo respiratory ATP stoichiometry</title><author>Taymaz-Nikerel, Hilal ; Borujeni, Amin Espah ; Verheijen, Peter J.T ; Heijnen, Joseph J ; van Gulik, Walter M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4752-6047569276fe6c0f224c506d384659fab4c04ba3f3e123e9cbae1d76e063c88e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acetic Acid - metabolism</topic><topic>Adenosine triphosphatase</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>Biotechnology</topic><topic>Cell growth</topic><topic>E coli</topic><topic>energetics</topic><topic>Energy Metabolism - genetics</topic><topic>Escherichia coli</topic><topic>Escherichia coli K12 - genetics</topic><topic>Escherichia coli K12 - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genome, Bacterial</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glycerol - metabolism</topic><topic>Herbert-Pirt relations</topic><topic>maintenance</topic><topic>Metabolism</topic><topic>Models, Biological</topic><topic>P/O ratio</topic><topic>stoichiometric metabolic model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taymaz-Nikerel, Hilal</creatorcontrib><creatorcontrib>Borujeni, Amin Espah</creatorcontrib><creatorcontrib>Verheijen, Peter J.T</creatorcontrib><creatorcontrib>Heijnen, Joseph J</creatorcontrib><creatorcontrib>van Gulik, Walter M</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Genetics Abstracts</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taymaz-Nikerel, Hilal</au><au>Borujeni, Amin Espah</au><au>Verheijen, Peter J.T</au><au>Heijnen, Joseph J</au><au>van Gulik, Walter M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-derived minimal metabolic models for Escherichia coli MG1655 with estimated in vivo respiratory ATP stoichiometry</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>107</volume><issue>2</issue><spage>369</spage><epage>381</epage><pages>369-381</pages><issn>0006-3592</issn><issn>1097-0290</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>Metabolic network models describing growth of Escherichia coli on glucose, glycerol and acetate were derived from a genome scale model of E. coli. One of the uncertainties in the metabolic networks is the exact stoichiometry of energy generating and consuming processes. Accurate estimation of biomass and product yields requires correct information on the ATP stoichiometry. The unknown ATP stoichiometry parameters of the constructed E. coli network were estimated from experimental data of eight different aerobic chemostat experiments carried out with E. coli MG1655, grown at different dilution rates (0.025, 0.05, 0.1, and 0.3 h⁻¹) and on different carbon substrates (glucose, glycerol, and acetate). Proper estimation of the ATP stoichiometry requires proper information on the biomass composition of the organism as well as accurate assessment of net conversion rates under well-defined conditions. For this purpose a growth rate dependent biomass composition was derived, based on measurements and literature data. After incorporation of the growth rate dependent biomass composition in a metabolic network model, an effective P/O ratio of 1.49 ± 0.26 mol of ATP/mol of O, KX (growth dependent maintenance) of 0.46 ± 0.27 mol of ATP/C-mol of biomass and mATP (growth independent maintenance) of 0.075 ± 0.015 mol of ATP/C-mol of biomass/h were estimated using a newly developed Comprehensive Data Reconciliation (CDR) method, assuming that the three energetic parameters were independent of the growth rate and the used substrate. The resulting metabolic network model only requires the specific rate of growth, μ, as an input in order to accurately predict all other fluxes and yields. Biotechnol. Bioeng. 2010;107: 369-381.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>20506321</pmid><doi>10.1002/bit.22802</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2010-10, Vol.107 (2), p.369-381
issn 0006-3592
1097-0290
1097-0290
language eng
recordid cdi_proquest_miscellaneous_888096053
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Acetic Acid - metabolism
Adenosine triphosphatase
Adenosine Triphosphate - metabolism
Biological and medical sciences
Biomass
Biotechnology
Cell growth
E coli
energetics
Energy Metabolism - genetics
Escherichia coli
Escherichia coli K12 - genetics
Escherichia coli K12 - metabolism
Fundamental and applied biological sciences. Psychology
Genome, Bacterial
Glucose
Glucose - metabolism
Glycerol - metabolism
Herbert-Pirt relations
maintenance
Metabolism
Models, Biological
P/O ratio
stoichiometric metabolic model
title Genome-derived minimal metabolic models for Escherichia coli MG1655 with estimated in vivo respiratory ATP stoichiometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-derived%20minimal%20metabolic%20models%20for%20Escherichia%20coli%20MG1655%20with%20estimated%20in%20vivo%20respiratory%20ATP%20stoichiometry&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Taymaz-Nikerel,%20Hilal&rft.date=2010-10-01&rft.volume=107&rft.issue=2&rft.spage=369&rft.epage=381&rft.pages=369-381&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.22802&rft_dat=%3Cproquest_cross%3E2122200781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=747528613&rft_id=info:pmid/20506321&rfr_iscdi=true