The in vivo performance of an enzyme-assisted self-assembled peptide/protein hydrogel

Abstract We demonstrate the distribution of the important extracellular matrix protein laminin in a novel biomaterial consisting of a hydrogel underpinned by nanofibrillar networks. These are formed by the immobilised enzyme mediated self-assembly of fmoc-L3 (9-fluorenylmethoxycarbonyl-tri-leucine)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2011-08, Vol.32 (22), p.5304-5310
Hauptverfasser: Williams, Richard J, Hall, Thomas E, Glattauer, Veronica, White, Jacinta, Pasic, Paul J, Sorensen, Anders B, Waddington, Lynne, McLean, Keith M, Currie, Peter D, Hartley, Patrick G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5310
container_issue 22
container_start_page 5304
container_title Biomaterials
container_volume 32
creator Williams, Richard J
Hall, Thomas E
Glattauer, Veronica
White, Jacinta
Pasic, Paul J
Sorensen, Anders B
Waddington, Lynne
McLean, Keith M
Currie, Peter D
Hartley, Patrick G
description Abstract We demonstrate the distribution of the important extracellular matrix protein laminin in a novel biomaterial consisting of a hydrogel underpinned by nanofibrillar networks. These are formed by the immobilised enzyme mediated self-assembly of fmoc-L3 (9-fluorenylmethoxycarbonyl-tri-leucine). The peptide assembly yields nanofibrils formed of β -sheets that are locked together via π -stacking interactions. This ordering allows the localisation of the peptide sidechains on the surface, creating a hydrophobic environment. This induces the formation of bundles of these nanofibrils producing a clear hydrogel. This mechanism enables the three dimensional distribution of laminin throughout the network via supramolecular interactions. These forces favour the formation and improve the order of the network itself, as observed by spectroscopic and mechanical testing. In order to test the stability and suitability of this class of material for in vivo applications, we utilise microinjection to deliver the biomaterial under fine spatial control into a dystrophic zebrafish model organism, which lacks laminin as a result of a genetic mutation. Using confocal and transmission electron microscopy, we confirm that the biomaterial remains stable structurally, and is confined spatially to the site of injection.
doi_str_mv 10.1016/j.biomaterials.2011.03.078
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_888094543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961211003760</els_id><sourcerecordid>888094543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-82e1cd19578801c2c93e9056c44b1fdf35ed431891a5cdb8ef92b8daa09a5a863</originalsourceid><addsrcrecordid>eNqNkkuLFDEUhYMoTjv6F6Rwo5vqyc2jKnEhyPiEARfOrEMqueWkraqUSXVD--tN0aOIC3UVDnzn3EvOJeQZ0C1QaC522y7E0S6Ygh3yllGALeVb2qp7ZAOqVbXUVN4nGwqC1boBdkYe5byjRVPBHpIzBpKDkO2G3FzfYhWm6hAOsZox9TGNdnJYxb6yU4XT9-OItc055AV9lXHoV4VjNxQ547wEjxdziguWlNujT_ELDo_Jg76shk_u3nNy8-7t9eWH-urT-4-Xr69qJ7ReasUQnActW6UoOOY0x7J544TooPc9l-gFB6XBSuc7hb1mnfLWUm2lVQ0_J89PuWWBb3vMixlDdjgMdsK4z0aVXC2k4P8mG8VbLRpWyBd_JaFpgUmhW1HQlyfUpZhzwt7MKYw2HQ1Qs1Zldub3qsxalaHclKqK-endnH03ov9l_dlNAd6cACw_eAiYTHYBSzc-JHSL8TH835xXf8S4IUzB2eErHjHv4j5NqwdMZoaaz-vRrDcDQClvG8p_AF0GwQU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671254974</pqid></control><display><type>article</type><title>The in vivo performance of an enzyme-assisted self-assembled peptide/protein hydrogel</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Williams, Richard J ; Hall, Thomas E ; Glattauer, Veronica ; White, Jacinta ; Pasic, Paul J ; Sorensen, Anders B ; Waddington, Lynne ; McLean, Keith M ; Currie, Peter D ; Hartley, Patrick G</creator><creatorcontrib>Williams, Richard J ; Hall, Thomas E ; Glattauer, Veronica ; White, Jacinta ; Pasic, Paul J ; Sorensen, Anders B ; Waddington, Lynne ; McLean, Keith M ; Currie, Peter D ; Hartley, Patrick G</creatorcontrib><description>Abstract We demonstrate the distribution of the important extracellular matrix protein laminin in a novel biomaterial consisting of a hydrogel underpinned by nanofibrillar networks. These are formed by the immobilised enzyme mediated self-assembly of fmoc-L3 (9-fluorenylmethoxycarbonyl-tri-leucine). The peptide assembly yields nanofibrils formed of β -sheets that are locked together via π -stacking interactions. This ordering allows the localisation of the peptide sidechains on the surface, creating a hydrophobic environment. This induces the formation of bundles of these nanofibrils producing a clear hydrogel. This mechanism enables the three dimensional distribution of laminin throughout the network via supramolecular interactions. These forces favour the formation and improve the order of the network itself, as observed by spectroscopic and mechanical testing. In order to test the stability and suitability of this class of material for in vivo applications, we utilise microinjection to deliver the biomaterial under fine spatial control into a dystrophic zebrafish model organism, which lacks laminin as a result of a genetic mutation. Using confocal and transmission electron microscopy, we confirm that the biomaterial remains stable structurally, and is confined spatially to the site of injection.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2011.03.078</identifier><identifier>PMID: 21531457</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Animal model ; Animals ; Animals, Genetically Modified ; Biomaterials ; Biomedical materials ; Danio rerio ; Dentistry ; ECM (extracellular matrix) ; Fluorenes - chemistry ; Hydrogel ; Hydrogels - chemical synthesis ; Hydrogels - chemistry ; Laminin ; Laminin - genetics ; Laminin - metabolism ; Leucine - chemistry ; Materials Testing ; Molecular Structure ; Nanofibers - chemistry ; Nanofibers - ultrastructure ; Nanomaterials ; Nanostructure ; Networks ; Peptide ; Peptides ; Peptides - chemistry ; Protein Conformation ; Proteins - chemistry ; Self assembly ; Surgical implants ; Zebrafish - anatomy &amp; histology ; Zebrafish - genetics ; Zebrafish Proteins - genetics ; Zebrafish Proteins - metabolism</subject><ispartof>Biomaterials, 2011-08, Vol.32 (22), p.5304-5310</ispartof><rights>2011</rights><rights>Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-82e1cd19578801c2c93e9056c44b1fdf35ed431891a5cdb8ef92b8daa09a5a863</citedby><cites>FETCH-LOGICAL-c499t-82e1cd19578801c2c93e9056c44b1fdf35ed431891a5cdb8ef92b8daa09a5a863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2011.03.078$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21531457$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Williams, Richard J</creatorcontrib><creatorcontrib>Hall, Thomas E</creatorcontrib><creatorcontrib>Glattauer, Veronica</creatorcontrib><creatorcontrib>White, Jacinta</creatorcontrib><creatorcontrib>Pasic, Paul J</creatorcontrib><creatorcontrib>Sorensen, Anders B</creatorcontrib><creatorcontrib>Waddington, Lynne</creatorcontrib><creatorcontrib>McLean, Keith M</creatorcontrib><creatorcontrib>Currie, Peter D</creatorcontrib><creatorcontrib>Hartley, Patrick G</creatorcontrib><title>The in vivo performance of an enzyme-assisted self-assembled peptide/protein hydrogel</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract We demonstrate the distribution of the important extracellular matrix protein laminin in a novel biomaterial consisting of a hydrogel underpinned by nanofibrillar networks. These are formed by the immobilised enzyme mediated self-assembly of fmoc-L3 (9-fluorenylmethoxycarbonyl-tri-leucine). The peptide assembly yields nanofibrils formed of β -sheets that are locked together via π -stacking interactions. This ordering allows the localisation of the peptide sidechains on the surface, creating a hydrophobic environment. This induces the formation of bundles of these nanofibrils producing a clear hydrogel. This mechanism enables the three dimensional distribution of laminin throughout the network via supramolecular interactions. These forces favour the formation and improve the order of the network itself, as observed by spectroscopic and mechanical testing. In order to test the stability and suitability of this class of material for in vivo applications, we utilise microinjection to deliver the biomaterial under fine spatial control into a dystrophic zebrafish model organism, which lacks laminin as a result of a genetic mutation. Using confocal and transmission electron microscopy, we confirm that the biomaterial remains stable structurally, and is confined spatially to the site of injection.</description><subject>Advanced Basic Science</subject><subject>Animal model</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Danio rerio</subject><subject>Dentistry</subject><subject>ECM (extracellular matrix)</subject><subject>Fluorenes - chemistry</subject><subject>Hydrogel</subject><subject>Hydrogels - chemical synthesis</subject><subject>Hydrogels - chemistry</subject><subject>Laminin</subject><subject>Laminin - genetics</subject><subject>Laminin - metabolism</subject><subject>Leucine - chemistry</subject><subject>Materials Testing</subject><subject>Molecular Structure</subject><subject>Nanofibers - chemistry</subject><subject>Nanofibers - ultrastructure</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Networks</subject><subject>Peptide</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Protein Conformation</subject><subject>Proteins - chemistry</subject><subject>Self assembly</subject><subject>Surgical implants</subject><subject>Zebrafish - anatomy &amp; histology</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish Proteins - genetics</subject><subject>Zebrafish Proteins - metabolism</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkkuLFDEUhYMoTjv6F6Rwo5vqyc2jKnEhyPiEARfOrEMqueWkraqUSXVD--tN0aOIC3UVDnzn3EvOJeQZ0C1QaC522y7E0S6Ygh3yllGALeVb2qp7ZAOqVbXUVN4nGwqC1boBdkYe5byjRVPBHpIzBpKDkO2G3FzfYhWm6hAOsZox9TGNdnJYxb6yU4XT9-OItc055AV9lXHoV4VjNxQ547wEjxdziguWlNujT_ELDo_Jg76shk_u3nNy8-7t9eWH-urT-4-Xr69qJ7ReasUQnActW6UoOOY0x7J544TooPc9l-gFB6XBSuc7hb1mnfLWUm2lVQ0_J89PuWWBb3vMixlDdjgMdsK4z0aVXC2k4P8mG8VbLRpWyBd_JaFpgUmhW1HQlyfUpZhzwt7MKYw2HQ1Qs1Zldub3qsxalaHclKqK-endnH03ov9l_dlNAd6cACw_eAiYTHYBSzc-JHSL8TH835xXf8S4IUzB2eErHjHv4j5NqwdMZoaaz-vRrDcDQClvG8p_AF0GwQU</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Williams, Richard J</creator><creator>Hall, Thomas E</creator><creator>Glattauer, Veronica</creator><creator>White, Jacinta</creator><creator>Pasic, Paul J</creator><creator>Sorensen, Anders B</creator><creator>Waddington, Lynne</creator><creator>McLean, Keith M</creator><creator>Currie, Peter D</creator><creator>Hartley, Patrick G</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>20110801</creationdate><title>The in vivo performance of an enzyme-assisted self-assembled peptide/protein hydrogel</title><author>Williams, Richard J ; Hall, Thomas E ; Glattauer, Veronica ; White, Jacinta ; Pasic, Paul J ; Sorensen, Anders B ; Waddington, Lynne ; McLean, Keith M ; Currie, Peter D ; Hartley, Patrick G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-82e1cd19578801c2c93e9056c44b1fdf35ed431891a5cdb8ef92b8daa09a5a863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Advanced Basic Science</topic><topic>Animal model</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Danio rerio</topic><topic>Dentistry</topic><topic>ECM (extracellular matrix)</topic><topic>Fluorenes - chemistry</topic><topic>Hydrogel</topic><topic>Hydrogels - chemical synthesis</topic><topic>Hydrogels - chemistry</topic><topic>Laminin</topic><topic>Laminin - genetics</topic><topic>Laminin - metabolism</topic><topic>Leucine - chemistry</topic><topic>Materials Testing</topic><topic>Molecular Structure</topic><topic>Nanofibers - chemistry</topic><topic>Nanofibers - ultrastructure</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Networks</topic><topic>Peptide</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Protein Conformation</topic><topic>Proteins - chemistry</topic><topic>Self assembly</topic><topic>Surgical implants</topic><topic>Zebrafish - anatomy &amp; histology</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish Proteins - genetics</topic><topic>Zebrafish Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, Richard J</creatorcontrib><creatorcontrib>Hall, Thomas E</creatorcontrib><creatorcontrib>Glattauer, Veronica</creatorcontrib><creatorcontrib>White, Jacinta</creatorcontrib><creatorcontrib>Pasic, Paul J</creatorcontrib><creatorcontrib>Sorensen, Anders B</creatorcontrib><creatorcontrib>Waddington, Lynne</creatorcontrib><creatorcontrib>McLean, Keith M</creatorcontrib><creatorcontrib>Currie, Peter D</creatorcontrib><creatorcontrib>Hartley, Patrick G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, Richard J</au><au>Hall, Thomas E</au><au>Glattauer, Veronica</au><au>White, Jacinta</au><au>Pasic, Paul J</au><au>Sorensen, Anders B</au><au>Waddington, Lynne</au><au>McLean, Keith M</au><au>Currie, Peter D</au><au>Hartley, Patrick G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The in vivo performance of an enzyme-assisted self-assembled peptide/protein hydrogel</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2011-08-01</date><risdate>2011</risdate><volume>32</volume><issue>22</issue><spage>5304</spage><epage>5310</epage><pages>5304-5310</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract We demonstrate the distribution of the important extracellular matrix protein laminin in a novel biomaterial consisting of a hydrogel underpinned by nanofibrillar networks. These are formed by the immobilised enzyme mediated self-assembly of fmoc-L3 (9-fluorenylmethoxycarbonyl-tri-leucine). The peptide assembly yields nanofibrils formed of β -sheets that are locked together via π -stacking interactions. This ordering allows the localisation of the peptide sidechains on the surface, creating a hydrophobic environment. This induces the formation of bundles of these nanofibrils producing a clear hydrogel. This mechanism enables the three dimensional distribution of laminin throughout the network via supramolecular interactions. These forces favour the formation and improve the order of the network itself, as observed by spectroscopic and mechanical testing. In order to test the stability and suitability of this class of material for in vivo applications, we utilise microinjection to deliver the biomaterial under fine spatial control into a dystrophic zebrafish model organism, which lacks laminin as a result of a genetic mutation. Using confocal and transmission electron microscopy, we confirm that the biomaterial remains stable structurally, and is confined spatially to the site of injection.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>21531457</pmid><doi>10.1016/j.biomaterials.2011.03.078</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2011-08, Vol.32 (22), p.5304-5310
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_888094543
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Advanced Basic Science
Animal model
Animals
Animals, Genetically Modified
Biomaterials
Biomedical materials
Danio rerio
Dentistry
ECM (extracellular matrix)
Fluorenes - chemistry
Hydrogel
Hydrogels - chemical synthesis
Hydrogels - chemistry
Laminin
Laminin - genetics
Laminin - metabolism
Leucine - chemistry
Materials Testing
Molecular Structure
Nanofibers - chemistry
Nanofibers - ultrastructure
Nanomaterials
Nanostructure
Networks
Peptide
Peptides
Peptides - chemistry
Protein Conformation
Proteins - chemistry
Self assembly
Surgical implants
Zebrafish - anatomy & histology
Zebrafish - genetics
Zebrafish Proteins - genetics
Zebrafish Proteins - metabolism
title The in vivo performance of an enzyme-assisted self-assembled peptide/protein hydrogel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A00%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20in%20vivo%20performance%20of%20an%20enzyme-assisted%20self-assembled%20peptide/protein%20hydrogel&rft.jtitle=Biomaterials&rft.au=Williams,%20Richard%20J&rft.date=2011-08-01&rft.volume=32&rft.issue=22&rft.spage=5304&rft.epage=5310&rft.pages=5304-5310&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2011.03.078&rft_dat=%3Cproquest_cross%3E888094543%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671254974&rft_id=info:pmid/21531457&rft_els_id=S0142961211003760&rfr_iscdi=true