The in vivo performance of an enzyme-assisted self-assembled peptide/protein hydrogel
Abstract We demonstrate the distribution of the important extracellular matrix protein laminin in a novel biomaterial consisting of a hydrogel underpinned by nanofibrillar networks. These are formed by the immobilised enzyme mediated self-assembly of fmoc-L3 (9-fluorenylmethoxycarbonyl-tri-leucine)....
Gespeichert in:
Veröffentlicht in: | Biomaterials 2011-08, Vol.32 (22), p.5304-5310 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5310 |
---|---|
container_issue | 22 |
container_start_page | 5304 |
container_title | Biomaterials |
container_volume | 32 |
creator | Williams, Richard J Hall, Thomas E Glattauer, Veronica White, Jacinta Pasic, Paul J Sorensen, Anders B Waddington, Lynne McLean, Keith M Currie, Peter D Hartley, Patrick G |
description | Abstract We demonstrate the distribution of the important extracellular matrix protein laminin in a novel biomaterial consisting of a hydrogel underpinned by nanofibrillar networks. These are formed by the immobilised enzyme mediated self-assembly of fmoc-L3 (9-fluorenylmethoxycarbonyl-tri-leucine). The peptide assembly yields nanofibrils formed of β -sheets that are locked together via π -stacking interactions. This ordering allows the localisation of the peptide sidechains on the surface, creating a hydrophobic environment. This induces the formation of bundles of these nanofibrils producing a clear hydrogel. This mechanism enables the three dimensional distribution of laminin throughout the network via supramolecular interactions. These forces favour the formation and improve the order of the network itself, as observed by spectroscopic and mechanical testing. In order to test the stability and suitability of this class of material for in vivo applications, we utilise microinjection to deliver the biomaterial under fine spatial control into a dystrophic zebrafish model organism, which lacks laminin as a result of a genetic mutation. Using confocal and transmission electron microscopy, we confirm that the biomaterial remains stable structurally, and is confined spatially to the site of injection. |
doi_str_mv | 10.1016/j.biomaterials.2011.03.078 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_888094543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961211003760</els_id><sourcerecordid>888094543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-82e1cd19578801c2c93e9056c44b1fdf35ed431891a5cdb8ef92b8daa09a5a863</originalsourceid><addsrcrecordid>eNqNkkuLFDEUhYMoTjv6F6Rwo5vqyc2jKnEhyPiEARfOrEMqueWkraqUSXVD--tN0aOIC3UVDnzn3EvOJeQZ0C1QaC522y7E0S6Ygh3yllGALeVb2qp7ZAOqVbXUVN4nGwqC1boBdkYe5byjRVPBHpIzBpKDkO2G3FzfYhWm6hAOsZox9TGNdnJYxb6yU4XT9-OItc055AV9lXHoV4VjNxQ547wEjxdziguWlNujT_ELDo_Jg76shk_u3nNy8-7t9eWH-urT-4-Xr69qJ7ReasUQnActW6UoOOY0x7J544TooPc9l-gFB6XBSuc7hb1mnfLWUm2lVQ0_J89PuWWBb3vMixlDdjgMdsK4z0aVXC2k4P8mG8VbLRpWyBd_JaFpgUmhW1HQlyfUpZhzwt7MKYw2HQ1Qs1Zldub3qsxalaHclKqK-endnH03ov9l_dlNAd6cACw_eAiYTHYBSzc-JHSL8TH835xXf8S4IUzB2eErHjHv4j5NqwdMZoaaz-vRrDcDQClvG8p_AF0GwQU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671254974</pqid></control><display><type>article</type><title>The in vivo performance of an enzyme-assisted self-assembled peptide/protein hydrogel</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Williams, Richard J ; Hall, Thomas E ; Glattauer, Veronica ; White, Jacinta ; Pasic, Paul J ; Sorensen, Anders B ; Waddington, Lynne ; McLean, Keith M ; Currie, Peter D ; Hartley, Patrick G</creator><creatorcontrib>Williams, Richard J ; Hall, Thomas E ; Glattauer, Veronica ; White, Jacinta ; Pasic, Paul J ; Sorensen, Anders B ; Waddington, Lynne ; McLean, Keith M ; Currie, Peter D ; Hartley, Patrick G</creatorcontrib><description>Abstract We demonstrate the distribution of the important extracellular matrix protein laminin in a novel biomaterial consisting of a hydrogel underpinned by nanofibrillar networks. These are formed by the immobilised enzyme mediated self-assembly of fmoc-L3 (9-fluorenylmethoxycarbonyl-tri-leucine). The peptide assembly yields nanofibrils formed of β -sheets that are locked together via π -stacking interactions. This ordering allows the localisation of the peptide sidechains on the surface, creating a hydrophobic environment. This induces the formation of bundles of these nanofibrils producing a clear hydrogel. This mechanism enables the three dimensional distribution of laminin throughout the network via supramolecular interactions. These forces favour the formation and improve the order of the network itself, as observed by spectroscopic and mechanical testing. In order to test the stability and suitability of this class of material for in vivo applications, we utilise microinjection to deliver the biomaterial under fine spatial control into a dystrophic zebrafish model organism, which lacks laminin as a result of a genetic mutation. Using confocal and transmission electron microscopy, we confirm that the biomaterial remains stable structurally, and is confined spatially to the site of injection.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2011.03.078</identifier><identifier>PMID: 21531457</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Animal model ; Animals ; Animals, Genetically Modified ; Biomaterials ; Biomedical materials ; Danio rerio ; Dentistry ; ECM (extracellular matrix) ; Fluorenes - chemistry ; Hydrogel ; Hydrogels - chemical synthesis ; Hydrogels - chemistry ; Laminin ; Laminin - genetics ; Laminin - metabolism ; Leucine - chemistry ; Materials Testing ; Molecular Structure ; Nanofibers - chemistry ; Nanofibers - ultrastructure ; Nanomaterials ; Nanostructure ; Networks ; Peptide ; Peptides ; Peptides - chemistry ; Protein Conformation ; Proteins - chemistry ; Self assembly ; Surgical implants ; Zebrafish - anatomy & histology ; Zebrafish - genetics ; Zebrafish Proteins - genetics ; Zebrafish Proteins - metabolism</subject><ispartof>Biomaterials, 2011-08, Vol.32 (22), p.5304-5310</ispartof><rights>2011</rights><rights>Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-82e1cd19578801c2c93e9056c44b1fdf35ed431891a5cdb8ef92b8daa09a5a863</citedby><cites>FETCH-LOGICAL-c499t-82e1cd19578801c2c93e9056c44b1fdf35ed431891a5cdb8ef92b8daa09a5a863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2011.03.078$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21531457$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Williams, Richard J</creatorcontrib><creatorcontrib>Hall, Thomas E</creatorcontrib><creatorcontrib>Glattauer, Veronica</creatorcontrib><creatorcontrib>White, Jacinta</creatorcontrib><creatorcontrib>Pasic, Paul J</creatorcontrib><creatorcontrib>Sorensen, Anders B</creatorcontrib><creatorcontrib>Waddington, Lynne</creatorcontrib><creatorcontrib>McLean, Keith M</creatorcontrib><creatorcontrib>Currie, Peter D</creatorcontrib><creatorcontrib>Hartley, Patrick G</creatorcontrib><title>The in vivo performance of an enzyme-assisted self-assembled peptide/protein hydrogel</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract We demonstrate the distribution of the important extracellular matrix protein laminin in a novel biomaterial consisting of a hydrogel underpinned by nanofibrillar networks. These are formed by the immobilised enzyme mediated self-assembly of fmoc-L3 (9-fluorenylmethoxycarbonyl-tri-leucine). The peptide assembly yields nanofibrils formed of β -sheets that are locked together via π -stacking interactions. This ordering allows the localisation of the peptide sidechains on the surface, creating a hydrophobic environment. This induces the formation of bundles of these nanofibrils producing a clear hydrogel. This mechanism enables the three dimensional distribution of laminin throughout the network via supramolecular interactions. These forces favour the formation and improve the order of the network itself, as observed by spectroscopic and mechanical testing. In order to test the stability and suitability of this class of material for in vivo applications, we utilise microinjection to deliver the biomaterial under fine spatial control into a dystrophic zebrafish model organism, which lacks laminin as a result of a genetic mutation. Using confocal and transmission electron microscopy, we confirm that the biomaterial remains stable structurally, and is confined spatially to the site of injection.</description><subject>Advanced Basic Science</subject><subject>Animal model</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Danio rerio</subject><subject>Dentistry</subject><subject>ECM (extracellular matrix)</subject><subject>Fluorenes - chemistry</subject><subject>Hydrogel</subject><subject>Hydrogels - chemical synthesis</subject><subject>Hydrogels - chemistry</subject><subject>Laminin</subject><subject>Laminin - genetics</subject><subject>Laminin - metabolism</subject><subject>Leucine - chemistry</subject><subject>Materials Testing</subject><subject>Molecular Structure</subject><subject>Nanofibers - chemistry</subject><subject>Nanofibers - ultrastructure</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Networks</subject><subject>Peptide</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Protein Conformation</subject><subject>Proteins - chemistry</subject><subject>Self assembly</subject><subject>Surgical implants</subject><subject>Zebrafish - anatomy & histology</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish Proteins - genetics</subject><subject>Zebrafish Proteins - metabolism</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkkuLFDEUhYMoTjv6F6Rwo5vqyc2jKnEhyPiEARfOrEMqueWkraqUSXVD--tN0aOIC3UVDnzn3EvOJeQZ0C1QaC522y7E0S6Ygh3yllGALeVb2qp7ZAOqVbXUVN4nGwqC1boBdkYe5byjRVPBHpIzBpKDkO2G3FzfYhWm6hAOsZox9TGNdnJYxb6yU4XT9-OItc055AV9lXHoV4VjNxQ547wEjxdziguWlNujT_ELDo_Jg76shk_u3nNy8-7t9eWH-urT-4-Xr69qJ7ReasUQnActW6UoOOY0x7J544TooPc9l-gFB6XBSuc7hb1mnfLWUm2lVQ0_J89PuWWBb3vMixlDdjgMdsK4z0aVXC2k4P8mG8VbLRpWyBd_JaFpgUmhW1HQlyfUpZhzwt7MKYw2HQ1Qs1Zldub3qsxalaHclKqK-endnH03ov9l_dlNAd6cACw_eAiYTHYBSzc-JHSL8TH835xXf8S4IUzB2eErHjHv4j5NqwdMZoaaz-vRrDcDQClvG8p_AF0GwQU</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Williams, Richard J</creator><creator>Hall, Thomas E</creator><creator>Glattauer, Veronica</creator><creator>White, Jacinta</creator><creator>Pasic, Paul J</creator><creator>Sorensen, Anders B</creator><creator>Waddington, Lynne</creator><creator>McLean, Keith M</creator><creator>Currie, Peter D</creator><creator>Hartley, Patrick G</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>20110801</creationdate><title>The in vivo performance of an enzyme-assisted self-assembled peptide/protein hydrogel</title><author>Williams, Richard J ; Hall, Thomas E ; Glattauer, Veronica ; White, Jacinta ; Pasic, Paul J ; Sorensen, Anders B ; Waddington, Lynne ; McLean, Keith M ; Currie, Peter D ; Hartley, Patrick G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-82e1cd19578801c2c93e9056c44b1fdf35ed431891a5cdb8ef92b8daa09a5a863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Advanced Basic Science</topic><topic>Animal model</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Danio rerio</topic><topic>Dentistry</topic><topic>ECM (extracellular matrix)</topic><topic>Fluorenes - chemistry</topic><topic>Hydrogel</topic><topic>Hydrogels - chemical synthesis</topic><topic>Hydrogels - chemistry</topic><topic>Laminin</topic><topic>Laminin - genetics</topic><topic>Laminin - metabolism</topic><topic>Leucine - chemistry</topic><topic>Materials Testing</topic><topic>Molecular Structure</topic><topic>Nanofibers - chemistry</topic><topic>Nanofibers - ultrastructure</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Networks</topic><topic>Peptide</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Protein Conformation</topic><topic>Proteins - chemistry</topic><topic>Self assembly</topic><topic>Surgical implants</topic><topic>Zebrafish - anatomy & histology</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish Proteins - genetics</topic><topic>Zebrafish Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, Richard J</creatorcontrib><creatorcontrib>Hall, Thomas E</creatorcontrib><creatorcontrib>Glattauer, Veronica</creatorcontrib><creatorcontrib>White, Jacinta</creatorcontrib><creatorcontrib>Pasic, Paul J</creatorcontrib><creatorcontrib>Sorensen, Anders B</creatorcontrib><creatorcontrib>Waddington, Lynne</creatorcontrib><creatorcontrib>McLean, Keith M</creatorcontrib><creatorcontrib>Currie, Peter D</creatorcontrib><creatorcontrib>Hartley, Patrick G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, Richard J</au><au>Hall, Thomas E</au><au>Glattauer, Veronica</au><au>White, Jacinta</au><au>Pasic, Paul J</au><au>Sorensen, Anders B</au><au>Waddington, Lynne</au><au>McLean, Keith M</au><au>Currie, Peter D</au><au>Hartley, Patrick G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The in vivo performance of an enzyme-assisted self-assembled peptide/protein hydrogel</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2011-08-01</date><risdate>2011</risdate><volume>32</volume><issue>22</issue><spage>5304</spage><epage>5310</epage><pages>5304-5310</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract We demonstrate the distribution of the important extracellular matrix protein laminin in a novel biomaterial consisting of a hydrogel underpinned by nanofibrillar networks. These are formed by the immobilised enzyme mediated self-assembly of fmoc-L3 (9-fluorenylmethoxycarbonyl-tri-leucine). The peptide assembly yields nanofibrils formed of β -sheets that are locked together via π -stacking interactions. This ordering allows the localisation of the peptide sidechains on the surface, creating a hydrophobic environment. This induces the formation of bundles of these nanofibrils producing a clear hydrogel. This mechanism enables the three dimensional distribution of laminin throughout the network via supramolecular interactions. These forces favour the formation and improve the order of the network itself, as observed by spectroscopic and mechanical testing. In order to test the stability and suitability of this class of material for in vivo applications, we utilise microinjection to deliver the biomaterial under fine spatial control into a dystrophic zebrafish model organism, which lacks laminin as a result of a genetic mutation. Using confocal and transmission electron microscopy, we confirm that the biomaterial remains stable structurally, and is confined spatially to the site of injection.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>21531457</pmid><doi>10.1016/j.biomaterials.2011.03.078</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2011-08, Vol.32 (22), p.5304-5310 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_888094543 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Advanced Basic Science Animal model Animals Animals, Genetically Modified Biomaterials Biomedical materials Danio rerio Dentistry ECM (extracellular matrix) Fluorenes - chemistry Hydrogel Hydrogels - chemical synthesis Hydrogels - chemistry Laminin Laminin - genetics Laminin - metabolism Leucine - chemistry Materials Testing Molecular Structure Nanofibers - chemistry Nanofibers - ultrastructure Nanomaterials Nanostructure Networks Peptide Peptides Peptides - chemistry Protein Conformation Proteins - chemistry Self assembly Surgical implants Zebrafish - anatomy & histology Zebrafish - genetics Zebrafish Proteins - genetics Zebrafish Proteins - metabolism |
title | The in vivo performance of an enzyme-assisted self-assembled peptide/protein hydrogel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A00%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20in%20vivo%20performance%20of%20an%20enzyme-assisted%20self-assembled%20peptide/protein%20hydrogel&rft.jtitle=Biomaterials&rft.au=Williams,%20Richard%20J&rft.date=2011-08-01&rft.volume=32&rft.issue=22&rft.spage=5304&rft.epage=5310&rft.pages=5304-5310&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2011.03.078&rft_dat=%3Cproquest_cross%3E888094543%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671254974&rft_id=info:pmid/21531457&rft_els_id=S0142961211003760&rfr_iscdi=true |