The emerging roles of nitric oxide (NO) in plant mitochondria
In recent years nitric oxide (NO) has been recognized as an important signal molecule in plants. Both, reductive and oxidative pathways and different subcellular compartments appear involved in NO production. The reductive pathway uses nitrite as substrate, which is exclusively generated by cytosoli...
Gespeichert in:
Veröffentlicht in: | Plant science (Limerick) 2011-11, Vol.181 (5), p.520-526 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 526 |
---|---|
container_issue | 5 |
container_start_page | 520 |
container_title | Plant science (Limerick) |
container_volume | 181 |
creator | Gupta, Kapuganti J Igamberdiev, Abir U Manjunatha, Girigowda Segu, Shruthi Moran, Jose F Neelawarne, Bagyalakshmi Bauwe, Hermann Kaiser, Werner M |
description | In recent years nitric oxide (NO) has been recognized as an important signal molecule in plants. Both, reductive and oxidative pathways and different subcellular compartments appear involved in NO production. The reductive pathway uses nitrite as substrate, which is exclusively generated by cytosolic nitrate reductase (NR) and can be converted to NO by the same enzyme. The mitochondrial electron transport chain is another site for nitrite to NO reduction, operating specifically when the normal electron acceptor, O2, is low or absent. Under these conditions, the mitochondrial NO production contributes to hypoxic survival by maintaining a minimal ATP formation. In contrast, excessive NO production and concomitant nitrosative stress may be prevented by the operation of NO-scavenging mechanisms in mitochondria and cytosol. During pathogen attacks, mitochondrial NO serves as a nitrosylating agent promoting cell death; whereas in symbiotic interactions as in root nodules, the turnover of mitochondrial NO helps in improving the energy status similarly as under hypoxia/anoxia. The contribution of NO turnover during pathogen defense, symbiosis and hypoxic stress is discussed in detail. |
doi_str_mv | 10.1016/j.plantsci.2011.03.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_887937920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168945211000951</els_id><sourcerecordid>887937920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-4be46d6c5855e03c897945e7b8b14f22c0115efc322d24dfc2f89d8b49091ce33</originalsourceid><addsrcrecordid>eNqFkM1u1DAUhS0EokPhFYo3CFgk-DexF5WoKv6kii5o15ZjX089SuLBziD69niYKexg5YW_e8-5H0JnlLSU0O7dpt2Odl6Kiy0jlLaEt4SqR2hFVc8bxqR-jFYVVI0Wkp2gZ6VsCCFMyv4pOmFUac5Ev0LnN3eAYYK8jvMa5zRCwSngOS45Opx-Rg_4zdfrtzjO-HcinuKS3F2afY72OXoS7FjgxfE9RbcfP9xcfm6urj99uby4apykdGnEAKLznZNKSiDcKd3XVtAPaqAiMObqBRKC44x5JnxwLCjt1SA00dQB56fo9WHvNqfvOyiLmWJxMNZCkHbFKNVr3mtGKtkdSJdTKRmC2eY42XxvKDF7c2ZjHsyZvTlDuKnm6uDZMWI3TOD_jD2oqsCrI2CLs2PIdnax_OWkIERoXbmXBy7YZOw6V-b2W02q30QQ1XX_JBjr2D7r_YGAKvVHhGxqXZgd-JjBLcan-L97fgH9yKBL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>887937920</pqid></control><display><type>article</type><title>The emerging roles of nitric oxide (NO) in plant mitochondria</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Gupta, Kapuganti J ; Igamberdiev, Abir U ; Manjunatha, Girigowda ; Segu, Shruthi ; Moran, Jose F ; Neelawarne, Bagyalakshmi ; Bauwe, Hermann ; Kaiser, Werner M</creator><creatorcontrib>Gupta, Kapuganti J ; Igamberdiev, Abir U ; Manjunatha, Girigowda ; Segu, Shruthi ; Moran, Jose F ; Neelawarne, Bagyalakshmi ; Bauwe, Hermann ; Kaiser, Werner M</creatorcontrib><description>In recent years nitric oxide (NO) has been recognized as an important signal molecule in plants. Both, reductive and oxidative pathways and different subcellular compartments appear involved in NO production. The reductive pathway uses nitrite as substrate, which is exclusively generated by cytosolic nitrate reductase (NR) and can be converted to NO by the same enzyme. The mitochondrial electron transport chain is another site for nitrite to NO reduction, operating specifically when the normal electron acceptor, O2, is low or absent. Under these conditions, the mitochondrial NO production contributes to hypoxic survival by maintaining a minimal ATP formation. In contrast, excessive NO production and concomitant nitrosative stress may be prevented by the operation of NO-scavenging mechanisms in mitochondria and cytosol. During pathogen attacks, mitochondrial NO serves as a nitrosylating agent promoting cell death; whereas in symbiotic interactions as in root nodules, the turnover of mitochondrial NO helps in improving the energy status similarly as under hypoxia/anoxia. The contribution of NO turnover during pathogen defense, symbiosis and hypoxic stress is discussed in detail.</description><identifier>ISSN: 0168-9452</identifier><identifier>EISSN: 1873-2259</identifier><identifier>DOI: 10.1016/j.plantsci.2011.03.018</identifier><identifier>PMID: 21893247</identifier><identifier>CODEN: PLSCE4</identifier><language>eng</language><publisher>Shannon: Elsevier Ireland Ltd</publisher><subject>adenosine triphosphate ; Biological and medical sciences ; cell death ; Cell Hypoxia ; Chemiluminescence ; cytosol ; Electron Transport ; electron transport chain ; energy ; Fluorescence ; Fundamental and applied biological sciences. Psychology ; hypoxia ; Mitochondria ; Mitochondria - metabolism ; Models, Biological ; nitrate reductase ; Nitric oxide ; Nitric Oxide - biosynthesis ; Nitric Oxide - metabolism ; Nitric Oxide - physiology ; Nitric oxide synthase ; Nitric Oxide Synthase - metabolism ; Nitrite ; Nitrite Reductases - physiology ; Oxidation-Reduction ; oxygen ; pathogens ; Plant Proteins - metabolism ; Plant Proteins - physiology ; Plants - metabolism ; root nodules ; Signal Transduction ; symbiosis</subject><ispartof>Plant science (Limerick), 2011-11, Vol.181 (5), p.520-526</ispartof><rights>2011 Elsevier Ireland Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-4be46d6c5855e03c897945e7b8b14f22c0115efc322d24dfc2f89d8b49091ce33</citedby><cites>FETCH-LOGICAL-c511t-4be46d6c5855e03c897945e7b8b14f22c0115efc322d24dfc2f89d8b49091ce33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.plantsci.2011.03.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,3537,23911,23912,25121,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25400499$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21893247$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gupta, Kapuganti J</creatorcontrib><creatorcontrib>Igamberdiev, Abir U</creatorcontrib><creatorcontrib>Manjunatha, Girigowda</creatorcontrib><creatorcontrib>Segu, Shruthi</creatorcontrib><creatorcontrib>Moran, Jose F</creatorcontrib><creatorcontrib>Neelawarne, Bagyalakshmi</creatorcontrib><creatorcontrib>Bauwe, Hermann</creatorcontrib><creatorcontrib>Kaiser, Werner M</creatorcontrib><title>The emerging roles of nitric oxide (NO) in plant mitochondria</title><title>Plant science (Limerick)</title><addtitle>Plant Sci</addtitle><description>In recent years nitric oxide (NO) has been recognized as an important signal molecule in plants. Both, reductive and oxidative pathways and different subcellular compartments appear involved in NO production. The reductive pathway uses nitrite as substrate, which is exclusively generated by cytosolic nitrate reductase (NR) and can be converted to NO by the same enzyme. The mitochondrial electron transport chain is another site for nitrite to NO reduction, operating specifically when the normal electron acceptor, O2, is low or absent. Under these conditions, the mitochondrial NO production contributes to hypoxic survival by maintaining a minimal ATP formation. In contrast, excessive NO production and concomitant nitrosative stress may be prevented by the operation of NO-scavenging mechanisms in mitochondria and cytosol. During pathogen attacks, mitochondrial NO serves as a nitrosylating agent promoting cell death; whereas in symbiotic interactions as in root nodules, the turnover of mitochondrial NO helps in improving the energy status similarly as under hypoxia/anoxia. The contribution of NO turnover during pathogen defense, symbiosis and hypoxic stress is discussed in detail.</description><subject>adenosine triphosphate</subject><subject>Biological and medical sciences</subject><subject>cell death</subject><subject>Cell Hypoxia</subject><subject>Chemiluminescence</subject><subject>cytosol</subject><subject>Electron Transport</subject><subject>electron transport chain</subject><subject>energy</subject><subject>Fluorescence</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>hypoxia</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Models, Biological</subject><subject>nitrate reductase</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - biosynthesis</subject><subject>Nitric Oxide - metabolism</subject><subject>Nitric Oxide - physiology</subject><subject>Nitric oxide synthase</subject><subject>Nitric Oxide Synthase - metabolism</subject><subject>Nitrite</subject><subject>Nitrite Reductases - physiology</subject><subject>Oxidation-Reduction</subject><subject>oxygen</subject><subject>pathogens</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Proteins - physiology</subject><subject>Plants - metabolism</subject><subject>root nodules</subject><subject>Signal Transduction</subject><subject>symbiosis</subject><issn>0168-9452</issn><issn>1873-2259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1u1DAUhS0EokPhFYo3CFgk-DexF5WoKv6kii5o15ZjX089SuLBziD69niYKexg5YW_e8-5H0JnlLSU0O7dpt2Odl6Kiy0jlLaEt4SqR2hFVc8bxqR-jFYVVI0Wkp2gZ6VsCCFMyv4pOmFUac5Ev0LnN3eAYYK8jvMa5zRCwSngOS45Opx-Rg_4zdfrtzjO-HcinuKS3F2afY72OXoS7FjgxfE9RbcfP9xcfm6urj99uby4apykdGnEAKLznZNKSiDcKd3XVtAPaqAiMObqBRKC44x5JnxwLCjt1SA00dQB56fo9WHvNqfvOyiLmWJxMNZCkHbFKNVr3mtGKtkdSJdTKRmC2eY42XxvKDF7c2ZjHsyZvTlDuKnm6uDZMWI3TOD_jD2oqsCrI2CLs2PIdnax_OWkIERoXbmXBy7YZOw6V-b2W02q30QQ1XX_JBjr2D7r_YGAKvVHhGxqXZgd-JjBLcan-L97fgH9yKBL</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Gupta, Kapuganti J</creator><creator>Igamberdiev, Abir U</creator><creator>Manjunatha, Girigowda</creator><creator>Segu, Shruthi</creator><creator>Moran, Jose F</creator><creator>Neelawarne, Bagyalakshmi</creator><creator>Bauwe, Hermann</creator><creator>Kaiser, Werner M</creator><general>Elsevier Ireland Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20111101</creationdate><title>The emerging roles of nitric oxide (NO) in plant mitochondria</title><author>Gupta, Kapuganti J ; Igamberdiev, Abir U ; Manjunatha, Girigowda ; Segu, Shruthi ; Moran, Jose F ; Neelawarne, Bagyalakshmi ; Bauwe, Hermann ; Kaiser, Werner M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-4be46d6c5855e03c897945e7b8b14f22c0115efc322d24dfc2f89d8b49091ce33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>adenosine triphosphate</topic><topic>Biological and medical sciences</topic><topic>cell death</topic><topic>Cell Hypoxia</topic><topic>Chemiluminescence</topic><topic>cytosol</topic><topic>Electron Transport</topic><topic>electron transport chain</topic><topic>energy</topic><topic>Fluorescence</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>hypoxia</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Models, Biological</topic><topic>nitrate reductase</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - biosynthesis</topic><topic>Nitric Oxide - metabolism</topic><topic>Nitric Oxide - physiology</topic><topic>Nitric oxide synthase</topic><topic>Nitric Oxide Synthase - metabolism</topic><topic>Nitrite</topic><topic>Nitrite Reductases - physiology</topic><topic>Oxidation-Reduction</topic><topic>oxygen</topic><topic>pathogens</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Proteins - physiology</topic><topic>Plants - metabolism</topic><topic>root nodules</topic><topic>Signal Transduction</topic><topic>symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Kapuganti J</creatorcontrib><creatorcontrib>Igamberdiev, Abir U</creatorcontrib><creatorcontrib>Manjunatha, Girigowda</creatorcontrib><creatorcontrib>Segu, Shruthi</creatorcontrib><creatorcontrib>Moran, Jose F</creatorcontrib><creatorcontrib>Neelawarne, Bagyalakshmi</creatorcontrib><creatorcontrib>Bauwe, Hermann</creatorcontrib><creatorcontrib>Kaiser, Werner M</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant science (Limerick)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Kapuganti J</au><au>Igamberdiev, Abir U</au><au>Manjunatha, Girigowda</au><au>Segu, Shruthi</au><au>Moran, Jose F</au><au>Neelawarne, Bagyalakshmi</au><au>Bauwe, Hermann</au><au>Kaiser, Werner M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The emerging roles of nitric oxide (NO) in plant mitochondria</atitle><jtitle>Plant science (Limerick)</jtitle><addtitle>Plant Sci</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>181</volume><issue>5</issue><spage>520</spage><epage>526</epage><pages>520-526</pages><issn>0168-9452</issn><eissn>1873-2259</eissn><coden>PLSCE4</coden><abstract>In recent years nitric oxide (NO) has been recognized as an important signal molecule in plants. Both, reductive and oxidative pathways and different subcellular compartments appear involved in NO production. The reductive pathway uses nitrite as substrate, which is exclusively generated by cytosolic nitrate reductase (NR) and can be converted to NO by the same enzyme. The mitochondrial electron transport chain is another site for nitrite to NO reduction, operating specifically when the normal electron acceptor, O2, is low or absent. Under these conditions, the mitochondrial NO production contributes to hypoxic survival by maintaining a minimal ATP formation. In contrast, excessive NO production and concomitant nitrosative stress may be prevented by the operation of NO-scavenging mechanisms in mitochondria and cytosol. During pathogen attacks, mitochondrial NO serves as a nitrosylating agent promoting cell death; whereas in symbiotic interactions as in root nodules, the turnover of mitochondrial NO helps in improving the energy status similarly as under hypoxia/anoxia. The contribution of NO turnover during pathogen defense, symbiosis and hypoxic stress is discussed in detail.</abstract><cop>Shannon</cop><pub>Elsevier Ireland Ltd</pub><pmid>21893247</pmid><doi>10.1016/j.plantsci.2011.03.018</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-9452 |
ispartof | Plant science (Limerick), 2011-11, Vol.181 (5), p.520-526 |
issn | 0168-9452 1873-2259 |
language | eng |
recordid | cdi_proquest_miscellaneous_887937920 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | adenosine triphosphate Biological and medical sciences cell death Cell Hypoxia Chemiluminescence cytosol Electron Transport electron transport chain energy Fluorescence Fundamental and applied biological sciences. Psychology hypoxia Mitochondria Mitochondria - metabolism Models, Biological nitrate reductase Nitric oxide Nitric Oxide - biosynthesis Nitric Oxide - metabolism Nitric Oxide - physiology Nitric oxide synthase Nitric Oxide Synthase - metabolism Nitrite Nitrite Reductases - physiology Oxidation-Reduction oxygen pathogens Plant Proteins - metabolism Plant Proteins - physiology Plants - metabolism root nodules Signal Transduction symbiosis |
title | The emerging roles of nitric oxide (NO) in plant mitochondria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A10%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20emerging%20roles%20of%20nitric%20oxide%20(NO)%20in%20plant%20mitochondria&rft.jtitle=Plant%20science%20(Limerick)&rft.au=Gupta,%20Kapuganti%20J&rft.date=2011-11-01&rft.volume=181&rft.issue=5&rft.spage=520&rft.epage=526&rft.pages=520-526&rft.issn=0168-9452&rft.eissn=1873-2259&rft.coden=PLSCE4&rft_id=info:doi/10.1016/j.plantsci.2011.03.018&rft_dat=%3Cproquest_cross%3E887937920%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=887937920&rft_id=info:pmid/21893247&rft_els_id=S0168945211000951&rfr_iscdi=true |