The emerging roles of nitric oxide (NO) in plant mitochondria

In recent years nitric oxide (NO) has been recognized as an important signal molecule in plants. Both, reductive and oxidative pathways and different subcellular compartments appear involved in NO production. The reductive pathway uses nitrite as substrate, which is exclusively generated by cytosoli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant science (Limerick) 2011-11, Vol.181 (5), p.520-526
Hauptverfasser: Gupta, Kapuganti J, Igamberdiev, Abir U, Manjunatha, Girigowda, Segu, Shruthi, Moran, Jose F, Neelawarne, Bagyalakshmi, Bauwe, Hermann, Kaiser, Werner M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 526
container_issue 5
container_start_page 520
container_title Plant science (Limerick)
container_volume 181
creator Gupta, Kapuganti J
Igamberdiev, Abir U
Manjunatha, Girigowda
Segu, Shruthi
Moran, Jose F
Neelawarne, Bagyalakshmi
Bauwe, Hermann
Kaiser, Werner M
description In recent years nitric oxide (NO) has been recognized as an important signal molecule in plants. Both, reductive and oxidative pathways and different subcellular compartments appear involved in NO production. The reductive pathway uses nitrite as substrate, which is exclusively generated by cytosolic nitrate reductase (NR) and can be converted to NO by the same enzyme. The mitochondrial electron transport chain is another site for nitrite to NO reduction, operating specifically when the normal electron acceptor, O2, is low or absent. Under these conditions, the mitochondrial NO production contributes to hypoxic survival by maintaining a minimal ATP formation. In contrast, excessive NO production and concomitant nitrosative stress may be prevented by the operation of NO-scavenging mechanisms in mitochondria and cytosol. During pathogen attacks, mitochondrial NO serves as a nitrosylating agent promoting cell death; whereas in symbiotic interactions as in root nodules, the turnover of mitochondrial NO helps in improving the energy status similarly as under hypoxia/anoxia. The contribution of NO turnover during pathogen defense, symbiosis and hypoxic stress is discussed in detail.
doi_str_mv 10.1016/j.plantsci.2011.03.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_887937920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168945211000951</els_id><sourcerecordid>887937920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-4be46d6c5855e03c897945e7b8b14f22c0115efc322d24dfc2f89d8b49091ce33</originalsourceid><addsrcrecordid>eNqFkM1u1DAUhS0EokPhFYo3CFgk-DexF5WoKv6kii5o15ZjX089SuLBziD69niYKexg5YW_e8-5H0JnlLSU0O7dpt2Odl6Kiy0jlLaEt4SqR2hFVc8bxqR-jFYVVI0Wkp2gZ6VsCCFMyv4pOmFUac5Ev0LnN3eAYYK8jvMa5zRCwSngOS45Opx-Rg_4zdfrtzjO-HcinuKS3F2afY72OXoS7FjgxfE9RbcfP9xcfm6urj99uby4apykdGnEAKLznZNKSiDcKd3XVtAPaqAiMObqBRKC44x5JnxwLCjt1SA00dQB56fo9WHvNqfvOyiLmWJxMNZCkHbFKNVr3mtGKtkdSJdTKRmC2eY42XxvKDF7c2ZjHsyZvTlDuKnm6uDZMWI3TOD_jD2oqsCrI2CLs2PIdnax_OWkIERoXbmXBy7YZOw6V-b2W02q30QQ1XX_JBjr2D7r_YGAKvVHhGxqXZgd-JjBLcan-L97fgH9yKBL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>887937920</pqid></control><display><type>article</type><title>The emerging roles of nitric oxide (NO) in plant mitochondria</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Gupta, Kapuganti J ; Igamberdiev, Abir U ; Manjunatha, Girigowda ; Segu, Shruthi ; Moran, Jose F ; Neelawarne, Bagyalakshmi ; Bauwe, Hermann ; Kaiser, Werner M</creator><creatorcontrib>Gupta, Kapuganti J ; Igamberdiev, Abir U ; Manjunatha, Girigowda ; Segu, Shruthi ; Moran, Jose F ; Neelawarne, Bagyalakshmi ; Bauwe, Hermann ; Kaiser, Werner M</creatorcontrib><description>In recent years nitric oxide (NO) has been recognized as an important signal molecule in plants. Both, reductive and oxidative pathways and different subcellular compartments appear involved in NO production. The reductive pathway uses nitrite as substrate, which is exclusively generated by cytosolic nitrate reductase (NR) and can be converted to NO by the same enzyme. The mitochondrial electron transport chain is another site for nitrite to NO reduction, operating specifically when the normal electron acceptor, O2, is low or absent. Under these conditions, the mitochondrial NO production contributes to hypoxic survival by maintaining a minimal ATP formation. In contrast, excessive NO production and concomitant nitrosative stress may be prevented by the operation of NO-scavenging mechanisms in mitochondria and cytosol. During pathogen attacks, mitochondrial NO serves as a nitrosylating agent promoting cell death; whereas in symbiotic interactions as in root nodules, the turnover of mitochondrial NO helps in improving the energy status similarly as under hypoxia/anoxia. The contribution of NO turnover during pathogen defense, symbiosis and hypoxic stress is discussed in detail.</description><identifier>ISSN: 0168-9452</identifier><identifier>EISSN: 1873-2259</identifier><identifier>DOI: 10.1016/j.plantsci.2011.03.018</identifier><identifier>PMID: 21893247</identifier><identifier>CODEN: PLSCE4</identifier><language>eng</language><publisher>Shannon: Elsevier Ireland Ltd</publisher><subject>adenosine triphosphate ; Biological and medical sciences ; cell death ; Cell Hypoxia ; Chemiluminescence ; cytosol ; Electron Transport ; electron transport chain ; energy ; Fluorescence ; Fundamental and applied biological sciences. Psychology ; hypoxia ; Mitochondria ; Mitochondria - metabolism ; Models, Biological ; nitrate reductase ; Nitric oxide ; Nitric Oxide - biosynthesis ; Nitric Oxide - metabolism ; Nitric Oxide - physiology ; Nitric oxide synthase ; Nitric Oxide Synthase - metabolism ; Nitrite ; Nitrite Reductases - physiology ; Oxidation-Reduction ; oxygen ; pathogens ; Plant Proteins - metabolism ; Plant Proteins - physiology ; Plants - metabolism ; root nodules ; Signal Transduction ; symbiosis</subject><ispartof>Plant science (Limerick), 2011-11, Vol.181 (5), p.520-526</ispartof><rights>2011 Elsevier Ireland Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-4be46d6c5855e03c897945e7b8b14f22c0115efc322d24dfc2f89d8b49091ce33</citedby><cites>FETCH-LOGICAL-c511t-4be46d6c5855e03c897945e7b8b14f22c0115efc322d24dfc2f89d8b49091ce33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.plantsci.2011.03.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,3537,23911,23912,25121,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25400499$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21893247$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gupta, Kapuganti J</creatorcontrib><creatorcontrib>Igamberdiev, Abir U</creatorcontrib><creatorcontrib>Manjunatha, Girigowda</creatorcontrib><creatorcontrib>Segu, Shruthi</creatorcontrib><creatorcontrib>Moran, Jose F</creatorcontrib><creatorcontrib>Neelawarne, Bagyalakshmi</creatorcontrib><creatorcontrib>Bauwe, Hermann</creatorcontrib><creatorcontrib>Kaiser, Werner M</creatorcontrib><title>The emerging roles of nitric oxide (NO) in plant mitochondria</title><title>Plant science (Limerick)</title><addtitle>Plant Sci</addtitle><description>In recent years nitric oxide (NO) has been recognized as an important signal molecule in plants. Both, reductive and oxidative pathways and different subcellular compartments appear involved in NO production. The reductive pathway uses nitrite as substrate, which is exclusively generated by cytosolic nitrate reductase (NR) and can be converted to NO by the same enzyme. The mitochondrial electron transport chain is another site for nitrite to NO reduction, operating specifically when the normal electron acceptor, O2, is low or absent. Under these conditions, the mitochondrial NO production contributes to hypoxic survival by maintaining a minimal ATP formation. In contrast, excessive NO production and concomitant nitrosative stress may be prevented by the operation of NO-scavenging mechanisms in mitochondria and cytosol. During pathogen attacks, mitochondrial NO serves as a nitrosylating agent promoting cell death; whereas in symbiotic interactions as in root nodules, the turnover of mitochondrial NO helps in improving the energy status similarly as under hypoxia/anoxia. The contribution of NO turnover during pathogen defense, symbiosis and hypoxic stress is discussed in detail.</description><subject>adenosine triphosphate</subject><subject>Biological and medical sciences</subject><subject>cell death</subject><subject>Cell Hypoxia</subject><subject>Chemiluminescence</subject><subject>cytosol</subject><subject>Electron Transport</subject><subject>electron transport chain</subject><subject>energy</subject><subject>Fluorescence</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>hypoxia</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Models, Biological</subject><subject>nitrate reductase</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - biosynthesis</subject><subject>Nitric Oxide - metabolism</subject><subject>Nitric Oxide - physiology</subject><subject>Nitric oxide synthase</subject><subject>Nitric Oxide Synthase - metabolism</subject><subject>Nitrite</subject><subject>Nitrite Reductases - physiology</subject><subject>Oxidation-Reduction</subject><subject>oxygen</subject><subject>pathogens</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Proteins - physiology</subject><subject>Plants - metabolism</subject><subject>root nodules</subject><subject>Signal Transduction</subject><subject>symbiosis</subject><issn>0168-9452</issn><issn>1873-2259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1u1DAUhS0EokPhFYo3CFgk-DexF5WoKv6kii5o15ZjX089SuLBziD69niYKexg5YW_e8-5H0JnlLSU0O7dpt2Odl6Kiy0jlLaEt4SqR2hFVc8bxqR-jFYVVI0Wkp2gZ6VsCCFMyv4pOmFUac5Ev0LnN3eAYYK8jvMa5zRCwSngOS45Opx-Rg_4zdfrtzjO-HcinuKS3F2afY72OXoS7FjgxfE9RbcfP9xcfm6urj99uby4apykdGnEAKLznZNKSiDcKd3XVtAPaqAiMObqBRKC44x5JnxwLCjt1SA00dQB56fo9WHvNqfvOyiLmWJxMNZCkHbFKNVr3mtGKtkdSJdTKRmC2eY42XxvKDF7c2ZjHsyZvTlDuKnm6uDZMWI3TOD_jD2oqsCrI2CLs2PIdnax_OWkIERoXbmXBy7YZOw6V-b2W02q30QQ1XX_JBjr2D7r_YGAKvVHhGxqXZgd-JjBLcan-L97fgH9yKBL</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Gupta, Kapuganti J</creator><creator>Igamberdiev, Abir U</creator><creator>Manjunatha, Girigowda</creator><creator>Segu, Shruthi</creator><creator>Moran, Jose F</creator><creator>Neelawarne, Bagyalakshmi</creator><creator>Bauwe, Hermann</creator><creator>Kaiser, Werner M</creator><general>Elsevier Ireland Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20111101</creationdate><title>The emerging roles of nitric oxide (NO) in plant mitochondria</title><author>Gupta, Kapuganti J ; Igamberdiev, Abir U ; Manjunatha, Girigowda ; Segu, Shruthi ; Moran, Jose F ; Neelawarne, Bagyalakshmi ; Bauwe, Hermann ; Kaiser, Werner M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-4be46d6c5855e03c897945e7b8b14f22c0115efc322d24dfc2f89d8b49091ce33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>adenosine triphosphate</topic><topic>Biological and medical sciences</topic><topic>cell death</topic><topic>Cell Hypoxia</topic><topic>Chemiluminescence</topic><topic>cytosol</topic><topic>Electron Transport</topic><topic>electron transport chain</topic><topic>energy</topic><topic>Fluorescence</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>hypoxia</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Models, Biological</topic><topic>nitrate reductase</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - biosynthesis</topic><topic>Nitric Oxide - metabolism</topic><topic>Nitric Oxide - physiology</topic><topic>Nitric oxide synthase</topic><topic>Nitric Oxide Synthase - metabolism</topic><topic>Nitrite</topic><topic>Nitrite Reductases - physiology</topic><topic>Oxidation-Reduction</topic><topic>oxygen</topic><topic>pathogens</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Proteins - physiology</topic><topic>Plants - metabolism</topic><topic>root nodules</topic><topic>Signal Transduction</topic><topic>symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Kapuganti J</creatorcontrib><creatorcontrib>Igamberdiev, Abir U</creatorcontrib><creatorcontrib>Manjunatha, Girigowda</creatorcontrib><creatorcontrib>Segu, Shruthi</creatorcontrib><creatorcontrib>Moran, Jose F</creatorcontrib><creatorcontrib>Neelawarne, Bagyalakshmi</creatorcontrib><creatorcontrib>Bauwe, Hermann</creatorcontrib><creatorcontrib>Kaiser, Werner M</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant science (Limerick)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Kapuganti J</au><au>Igamberdiev, Abir U</au><au>Manjunatha, Girigowda</au><au>Segu, Shruthi</au><au>Moran, Jose F</au><au>Neelawarne, Bagyalakshmi</au><au>Bauwe, Hermann</au><au>Kaiser, Werner M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The emerging roles of nitric oxide (NO) in plant mitochondria</atitle><jtitle>Plant science (Limerick)</jtitle><addtitle>Plant Sci</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>181</volume><issue>5</issue><spage>520</spage><epage>526</epage><pages>520-526</pages><issn>0168-9452</issn><eissn>1873-2259</eissn><coden>PLSCE4</coden><abstract>In recent years nitric oxide (NO) has been recognized as an important signal molecule in plants. Both, reductive and oxidative pathways and different subcellular compartments appear involved in NO production. The reductive pathway uses nitrite as substrate, which is exclusively generated by cytosolic nitrate reductase (NR) and can be converted to NO by the same enzyme. The mitochondrial electron transport chain is another site for nitrite to NO reduction, operating specifically when the normal electron acceptor, O2, is low or absent. Under these conditions, the mitochondrial NO production contributes to hypoxic survival by maintaining a minimal ATP formation. In contrast, excessive NO production and concomitant nitrosative stress may be prevented by the operation of NO-scavenging mechanisms in mitochondria and cytosol. During pathogen attacks, mitochondrial NO serves as a nitrosylating agent promoting cell death; whereas in symbiotic interactions as in root nodules, the turnover of mitochondrial NO helps in improving the energy status similarly as under hypoxia/anoxia. The contribution of NO turnover during pathogen defense, symbiosis and hypoxic stress is discussed in detail.</abstract><cop>Shannon</cop><pub>Elsevier Ireland Ltd</pub><pmid>21893247</pmid><doi>10.1016/j.plantsci.2011.03.018</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-9452
ispartof Plant science (Limerick), 2011-11, Vol.181 (5), p.520-526
issn 0168-9452
1873-2259
language eng
recordid cdi_proquest_miscellaneous_887937920
source MEDLINE; Elsevier ScienceDirect Journals
subjects adenosine triphosphate
Biological and medical sciences
cell death
Cell Hypoxia
Chemiluminescence
cytosol
Electron Transport
electron transport chain
energy
Fluorescence
Fundamental and applied biological sciences. Psychology
hypoxia
Mitochondria
Mitochondria - metabolism
Models, Biological
nitrate reductase
Nitric oxide
Nitric Oxide - biosynthesis
Nitric Oxide - metabolism
Nitric Oxide - physiology
Nitric oxide synthase
Nitric Oxide Synthase - metabolism
Nitrite
Nitrite Reductases - physiology
Oxidation-Reduction
oxygen
pathogens
Plant Proteins - metabolism
Plant Proteins - physiology
Plants - metabolism
root nodules
Signal Transduction
symbiosis
title The emerging roles of nitric oxide (NO) in plant mitochondria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A10%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20emerging%20roles%20of%20nitric%20oxide%20(NO)%20in%20plant%20mitochondria&rft.jtitle=Plant%20science%20(Limerick)&rft.au=Gupta,%20Kapuganti%20J&rft.date=2011-11-01&rft.volume=181&rft.issue=5&rft.spage=520&rft.epage=526&rft.pages=520-526&rft.issn=0168-9452&rft.eissn=1873-2259&rft.coden=PLSCE4&rft_id=info:doi/10.1016/j.plantsci.2011.03.018&rft_dat=%3Cproquest_cross%3E887937920%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=887937920&rft_id=info:pmid/21893247&rft_els_id=S0168945211000951&rfr_iscdi=true