Transient Enzyme–Substrate Recognition Monitored by Real-Time NMR
Slow protein folding processes during which kinetic folding intermediates occur for an extended time can lead to aggregation and dysfunction in living cells. Therefore, protein folding helpers have evolved, which prevent proteins from aggregation and/or speed up folding processes. In this study, we...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2011-07, Vol.133 (29), p.11154-11162 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11162 |
---|---|
container_issue | 29 |
container_start_page | 11154 |
container_title | Journal of the American Chemical Society |
container_volume | 133 |
creator | Haupt, Caroline Patzschke, Rica Weininger, Ulrich Gröger, Stefan Kovermann, Michael Balbach, Jochen |
description | Slow protein folding processes during which kinetic folding intermediates occur for an extended time can lead to aggregation and dysfunction in living cells. Therefore, protein folding helpers have evolved, which prevent proteins from aggregation and/or speed up folding processes. In this study, we present the structural characterization of a long-living transient folding intermediate of RNase T1 (S54G/P55N) by time-resolved NMR spectroscopy. NMR resonances of this kinetic folding intermediate could be assigned mainly by a real-time 3D BEST-HNCA. These assignments were the basis to investigate the interaction sites between the protein folding helper enzyme SlyD(1-165) (SlyD*) from Escherichia coli (E. coli) and this kinetic intermediate at a residue resolution. Thus, we investigated the Michaelis–Menten complex of this enzyme reaction, because the NMR data acquisition was performed during the actual catalysis. The interaction surface of the transient folding intermediate is restricted to a region around the peptidyl–prolyl bond (Y38–P39), whose isomerization is catalyzed by SlyD*. The interaction surface regarding SlyD* extends from specific amino acids of the FKBP domain forming the peptidyl-prolyl cis/trans-isomerase active site to almost the entire IF domain. This illustrates an effective interplay between the two functional domains of SlyD* to facilitate protein folding catalysis. |
doi_str_mv | 10.1021/ja2010048 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_887507789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>887507789</sourcerecordid><originalsourceid>FETCH-LOGICAL-a314t-fd9ac749756f93071b24ada38e8983554df52cd292807df62ce8b37eff3d71cf3</originalsourceid><addsrcrecordid>eNptkMtOwzAQRS0EoqWw4AdQNgixCPgRx84SVeUhtSCVso4ce4xSJXGxk0W74h_4Q76EoJauWM2M7tGV5iB0TvANwZTcLhXFBONEHqAh4RTHnND0EA0xxjQWMmUDdBLCsj8TKskxGlCSpkTQbIjGC6-aUELTRpNms67h-_PrtStC61UL0Ry0e2_KtnRNNHP94jyYqFj3gariRVlD9Dybn6Ijq6oAZ7s5Qm_3k8X4MZ6-PDyN76axYiRpY2sypUWSCZ7ajGFBCpooo5gEmUnGeWIsp9rQjEosjE2pBlkwAdYyI4i2bISutr0r7z46CG1el0FDVakGXBdyKQXHQsisJ6-3pPYuBA82X_myVn6dE5z_Ksv3ynr2YtfaFTWYPfnnqAcut4DSIV-6zjf9k_8U_QDhMnIH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>887507789</pqid></control><display><type>article</type><title>Transient Enzyme–Substrate Recognition Monitored by Real-Time NMR</title><source>MEDLINE</source><source>ACS Publications</source><creator>Haupt, Caroline ; Patzschke, Rica ; Weininger, Ulrich ; Gröger, Stefan ; Kovermann, Michael ; Balbach, Jochen</creator><creatorcontrib>Haupt, Caroline ; Patzschke, Rica ; Weininger, Ulrich ; Gröger, Stefan ; Kovermann, Michael ; Balbach, Jochen</creatorcontrib><description>Slow protein folding processes during which kinetic folding intermediates occur for an extended time can lead to aggregation and dysfunction in living cells. Therefore, protein folding helpers have evolved, which prevent proteins from aggregation and/or speed up folding processes. In this study, we present the structural characterization of a long-living transient folding intermediate of RNase T1 (S54G/P55N) by time-resolved NMR spectroscopy. NMR resonances of this kinetic folding intermediate could be assigned mainly by a real-time 3D BEST-HNCA. These assignments were the basis to investigate the interaction sites between the protein folding helper enzyme SlyD(1-165) (SlyD*) from Escherichia coli (E. coli) and this kinetic intermediate at a residue resolution. Thus, we investigated the Michaelis–Menten complex of this enzyme reaction, because the NMR data acquisition was performed during the actual catalysis. The interaction surface of the transient folding intermediate is restricted to a region around the peptidyl–prolyl bond (Y38–P39), whose isomerization is catalyzed by SlyD*. The interaction surface regarding SlyD* extends from specific amino acids of the FKBP domain forming the peptidyl-prolyl cis/trans-isomerase active site to almost the entire IF domain. This illustrates an effective interplay between the two functional domains of SlyD* to facilitate protein folding catalysis.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja2010048</identifier><identifier>PMID: 21661729</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Binding Sites ; Escherichia coli - chemistry ; Escherichia coli - enzymology ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - metabolism ; Models, Molecular ; Nuclear Magnetic Resonance, Biomolecular ; Peptidylprolyl Isomerase - chemistry ; Peptidylprolyl Isomerase - metabolism ; Protein Folding ; Ribonuclease T1 - chemistry ; Ribonuclease T1 - metabolism ; Substrate Specificity</subject><ispartof>Journal of the American Chemical Society, 2011-07, Vol.133 (29), p.11154-11162</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a314t-fd9ac749756f93071b24ada38e8983554df52cd292807df62ce8b37eff3d71cf3</citedby><cites>FETCH-LOGICAL-a314t-fd9ac749756f93071b24ada38e8983554df52cd292807df62ce8b37eff3d71cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja2010048$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja2010048$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21661729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haupt, Caroline</creatorcontrib><creatorcontrib>Patzschke, Rica</creatorcontrib><creatorcontrib>Weininger, Ulrich</creatorcontrib><creatorcontrib>Gröger, Stefan</creatorcontrib><creatorcontrib>Kovermann, Michael</creatorcontrib><creatorcontrib>Balbach, Jochen</creatorcontrib><title>Transient Enzyme–Substrate Recognition Monitored by Real-Time NMR</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Slow protein folding processes during which kinetic folding intermediates occur for an extended time can lead to aggregation and dysfunction in living cells. Therefore, protein folding helpers have evolved, which prevent proteins from aggregation and/or speed up folding processes. In this study, we present the structural characterization of a long-living transient folding intermediate of RNase T1 (S54G/P55N) by time-resolved NMR spectroscopy. NMR resonances of this kinetic folding intermediate could be assigned mainly by a real-time 3D BEST-HNCA. These assignments were the basis to investigate the interaction sites between the protein folding helper enzyme SlyD(1-165) (SlyD*) from Escherichia coli (E. coli) and this kinetic intermediate at a residue resolution. Thus, we investigated the Michaelis–Menten complex of this enzyme reaction, because the NMR data acquisition was performed during the actual catalysis. The interaction surface of the transient folding intermediate is restricted to a region around the peptidyl–prolyl bond (Y38–P39), whose isomerization is catalyzed by SlyD*. The interaction surface regarding SlyD* extends from specific amino acids of the FKBP domain forming the peptidyl-prolyl cis/trans-isomerase active site to almost the entire IF domain. This illustrates an effective interplay between the two functional domains of SlyD* to facilitate protein folding catalysis.</description><subject>Binding Sites</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Models, Molecular</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Peptidylprolyl Isomerase - chemistry</subject><subject>Peptidylprolyl Isomerase - metabolism</subject><subject>Protein Folding</subject><subject>Ribonuclease T1 - chemistry</subject><subject>Ribonuclease T1 - metabolism</subject><subject>Substrate Specificity</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkMtOwzAQRS0EoqWw4AdQNgixCPgRx84SVeUhtSCVso4ce4xSJXGxk0W74h_4Q76EoJauWM2M7tGV5iB0TvANwZTcLhXFBONEHqAh4RTHnND0EA0xxjQWMmUDdBLCsj8TKskxGlCSpkTQbIjGC6-aUELTRpNms67h-_PrtStC61UL0Ry0e2_KtnRNNHP94jyYqFj3gariRVlD9Dybn6Ijq6oAZ7s5Qm_3k8X4MZ6-PDyN76axYiRpY2sypUWSCZ7ajGFBCpooo5gEmUnGeWIsp9rQjEosjE2pBlkwAdYyI4i2bISutr0r7z46CG1el0FDVakGXBdyKQXHQsisJ6-3pPYuBA82X_myVn6dE5z_Ksv3ynr2YtfaFTWYPfnnqAcut4DSIV-6zjf9k_8U_QDhMnIH</recordid><startdate>20110727</startdate><enddate>20110727</enddate><creator>Haupt, Caroline</creator><creator>Patzschke, Rica</creator><creator>Weininger, Ulrich</creator><creator>Gröger, Stefan</creator><creator>Kovermann, Michael</creator><creator>Balbach, Jochen</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110727</creationdate><title>Transient Enzyme–Substrate Recognition Monitored by Real-Time NMR</title><author>Haupt, Caroline ; Patzschke, Rica ; Weininger, Ulrich ; Gröger, Stefan ; Kovermann, Michael ; Balbach, Jochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a314t-fd9ac749756f93071b24ada38e8983554df52cd292807df62ce8b37eff3d71cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Binding Sites</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Models, Molecular</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Peptidylprolyl Isomerase - chemistry</topic><topic>Peptidylprolyl Isomerase - metabolism</topic><topic>Protein Folding</topic><topic>Ribonuclease T1 - chemistry</topic><topic>Ribonuclease T1 - metabolism</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haupt, Caroline</creatorcontrib><creatorcontrib>Patzschke, Rica</creatorcontrib><creatorcontrib>Weininger, Ulrich</creatorcontrib><creatorcontrib>Gröger, Stefan</creatorcontrib><creatorcontrib>Kovermann, Michael</creatorcontrib><creatorcontrib>Balbach, Jochen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haupt, Caroline</au><au>Patzschke, Rica</au><au>Weininger, Ulrich</au><au>Gröger, Stefan</au><au>Kovermann, Michael</au><au>Balbach, Jochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient Enzyme–Substrate Recognition Monitored by Real-Time NMR</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2011-07-27</date><risdate>2011</risdate><volume>133</volume><issue>29</issue><spage>11154</spage><epage>11162</epage><pages>11154-11162</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Slow protein folding processes during which kinetic folding intermediates occur for an extended time can lead to aggregation and dysfunction in living cells. Therefore, protein folding helpers have evolved, which prevent proteins from aggregation and/or speed up folding processes. In this study, we present the structural characterization of a long-living transient folding intermediate of RNase T1 (S54G/P55N) by time-resolved NMR spectroscopy. NMR resonances of this kinetic folding intermediate could be assigned mainly by a real-time 3D BEST-HNCA. These assignments were the basis to investigate the interaction sites between the protein folding helper enzyme SlyD(1-165) (SlyD*) from Escherichia coli (E. coli) and this kinetic intermediate at a residue resolution. Thus, we investigated the Michaelis–Menten complex of this enzyme reaction, because the NMR data acquisition was performed during the actual catalysis. The interaction surface of the transient folding intermediate is restricted to a region around the peptidyl–prolyl bond (Y38–P39), whose isomerization is catalyzed by SlyD*. The interaction surface regarding SlyD* extends from specific amino acids of the FKBP domain forming the peptidyl-prolyl cis/trans-isomerase active site to almost the entire IF domain. This illustrates an effective interplay between the two functional domains of SlyD* to facilitate protein folding catalysis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>21661729</pmid><doi>10.1021/ja2010048</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2011-07, Vol.133 (29), p.11154-11162 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_887507789 |
source | MEDLINE; ACS Publications |
subjects | Binding Sites Escherichia coli - chemistry Escherichia coli - enzymology Escherichia coli Proteins - chemistry Escherichia coli Proteins - metabolism Models, Molecular Nuclear Magnetic Resonance, Biomolecular Peptidylprolyl Isomerase - chemistry Peptidylprolyl Isomerase - metabolism Protein Folding Ribonuclease T1 - chemistry Ribonuclease T1 - metabolism Substrate Specificity |
title | Transient Enzyme–Substrate Recognition Monitored by Real-Time NMR |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A50%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20Enzyme%E2%80%93Substrate%20Recognition%20Monitored%20by%20Real-Time%20NMR&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Haupt,%20Caroline&rft.date=2011-07-27&rft.volume=133&rft.issue=29&rft.spage=11154&rft.epage=11162&rft.pages=11154-11162&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja2010048&rft_dat=%3Cproquest_cross%3E887507789%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=887507789&rft_id=info:pmid/21661729&rfr_iscdi=true |