Transient Enzyme–Substrate Recognition Monitored by Real-Time NMR

Slow protein folding processes during which kinetic folding intermediates occur for an extended time can lead to aggregation and dysfunction in living cells. Therefore, protein folding helpers have evolved, which prevent proteins from aggregation and/or speed up folding processes. In this study, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2011-07, Vol.133 (29), p.11154-11162
Hauptverfasser: Haupt, Caroline, Patzschke, Rica, Weininger, Ulrich, Gröger, Stefan, Kovermann, Michael, Balbach, Jochen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11162
container_issue 29
container_start_page 11154
container_title Journal of the American Chemical Society
container_volume 133
creator Haupt, Caroline
Patzschke, Rica
Weininger, Ulrich
Gröger, Stefan
Kovermann, Michael
Balbach, Jochen
description Slow protein folding processes during which kinetic folding intermediates occur for an extended time can lead to aggregation and dysfunction in living cells. Therefore, protein folding helpers have evolved, which prevent proteins from aggregation and/or speed up folding processes. In this study, we present the structural characterization of a long-living transient folding intermediate of RNase T1 (S54G/P55N) by time-resolved NMR spectroscopy. NMR resonances of this kinetic folding intermediate could be assigned mainly by a real-time 3D BEST-HNCA. These assignments were the basis to investigate the interaction sites between the protein folding helper enzyme SlyD(1-165) (SlyD*) from Escherichia coli (E. coli) and this kinetic intermediate at a residue resolution. Thus, we investigated the Michaelis–Menten complex of this enzyme reaction, because the NMR data acquisition was performed during the actual catalysis. The interaction surface of the transient folding intermediate is restricted to a region around the peptidyl–prolyl bond (Y38–P39), whose isomerization is catalyzed by SlyD*. The interaction surface regarding SlyD* extends from specific amino acids of the FKBP domain forming the peptidyl-prolyl cis/trans-isomerase active site to almost the entire IF domain. This illustrates an effective interplay between the two functional domains of SlyD* to facilitate protein folding catalysis.
doi_str_mv 10.1021/ja2010048
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_887507789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>887507789</sourcerecordid><originalsourceid>FETCH-LOGICAL-a314t-fd9ac749756f93071b24ada38e8983554df52cd292807df62ce8b37eff3d71cf3</originalsourceid><addsrcrecordid>eNptkMtOwzAQRS0EoqWw4AdQNgixCPgRx84SVeUhtSCVso4ce4xSJXGxk0W74h_4Q76EoJauWM2M7tGV5iB0TvANwZTcLhXFBONEHqAh4RTHnND0EA0xxjQWMmUDdBLCsj8TKskxGlCSpkTQbIjGC6-aUELTRpNms67h-_PrtStC61UL0Ry0e2_KtnRNNHP94jyYqFj3gariRVlD9Dybn6Ijq6oAZ7s5Qm_3k8X4MZ6-PDyN76axYiRpY2sypUWSCZ7ajGFBCpooo5gEmUnGeWIsp9rQjEosjE2pBlkwAdYyI4i2bISutr0r7z46CG1el0FDVakGXBdyKQXHQsisJ6-3pPYuBA82X_myVn6dE5z_Ksv3ynr2YtfaFTWYPfnnqAcut4DSIV-6zjf9k_8U_QDhMnIH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>887507789</pqid></control><display><type>article</type><title>Transient Enzyme–Substrate Recognition Monitored by Real-Time NMR</title><source>MEDLINE</source><source>ACS Publications</source><creator>Haupt, Caroline ; Patzschke, Rica ; Weininger, Ulrich ; Gröger, Stefan ; Kovermann, Michael ; Balbach, Jochen</creator><creatorcontrib>Haupt, Caroline ; Patzschke, Rica ; Weininger, Ulrich ; Gröger, Stefan ; Kovermann, Michael ; Balbach, Jochen</creatorcontrib><description>Slow protein folding processes during which kinetic folding intermediates occur for an extended time can lead to aggregation and dysfunction in living cells. Therefore, protein folding helpers have evolved, which prevent proteins from aggregation and/or speed up folding processes. In this study, we present the structural characterization of a long-living transient folding intermediate of RNase T1 (S54G/P55N) by time-resolved NMR spectroscopy. NMR resonances of this kinetic folding intermediate could be assigned mainly by a real-time 3D BEST-HNCA. These assignments were the basis to investigate the interaction sites between the protein folding helper enzyme SlyD(1-165) (SlyD*) from Escherichia coli (E. coli) and this kinetic intermediate at a residue resolution. Thus, we investigated the Michaelis–Menten complex of this enzyme reaction, because the NMR data acquisition was performed during the actual catalysis. The interaction surface of the transient folding intermediate is restricted to a region around the peptidyl–prolyl bond (Y38–P39), whose isomerization is catalyzed by SlyD*. The interaction surface regarding SlyD* extends from specific amino acids of the FKBP domain forming the peptidyl-prolyl cis/trans-isomerase active site to almost the entire IF domain. This illustrates an effective interplay between the two functional domains of SlyD* to facilitate protein folding catalysis.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja2010048</identifier><identifier>PMID: 21661729</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Binding Sites ; Escherichia coli - chemistry ; Escherichia coli - enzymology ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - metabolism ; Models, Molecular ; Nuclear Magnetic Resonance, Biomolecular ; Peptidylprolyl Isomerase - chemistry ; Peptidylprolyl Isomerase - metabolism ; Protein Folding ; Ribonuclease T1 - chemistry ; Ribonuclease T1 - metabolism ; Substrate Specificity</subject><ispartof>Journal of the American Chemical Society, 2011-07, Vol.133 (29), p.11154-11162</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a314t-fd9ac749756f93071b24ada38e8983554df52cd292807df62ce8b37eff3d71cf3</citedby><cites>FETCH-LOGICAL-a314t-fd9ac749756f93071b24ada38e8983554df52cd292807df62ce8b37eff3d71cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja2010048$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja2010048$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21661729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haupt, Caroline</creatorcontrib><creatorcontrib>Patzschke, Rica</creatorcontrib><creatorcontrib>Weininger, Ulrich</creatorcontrib><creatorcontrib>Gröger, Stefan</creatorcontrib><creatorcontrib>Kovermann, Michael</creatorcontrib><creatorcontrib>Balbach, Jochen</creatorcontrib><title>Transient Enzyme–Substrate Recognition Monitored by Real-Time NMR</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Slow protein folding processes during which kinetic folding intermediates occur for an extended time can lead to aggregation and dysfunction in living cells. Therefore, protein folding helpers have evolved, which prevent proteins from aggregation and/or speed up folding processes. In this study, we present the structural characterization of a long-living transient folding intermediate of RNase T1 (S54G/P55N) by time-resolved NMR spectroscopy. NMR resonances of this kinetic folding intermediate could be assigned mainly by a real-time 3D BEST-HNCA. These assignments were the basis to investigate the interaction sites between the protein folding helper enzyme SlyD(1-165) (SlyD*) from Escherichia coli (E. coli) and this kinetic intermediate at a residue resolution. Thus, we investigated the Michaelis–Menten complex of this enzyme reaction, because the NMR data acquisition was performed during the actual catalysis. The interaction surface of the transient folding intermediate is restricted to a region around the peptidyl–prolyl bond (Y38–P39), whose isomerization is catalyzed by SlyD*. The interaction surface regarding SlyD* extends from specific amino acids of the FKBP domain forming the peptidyl-prolyl cis/trans-isomerase active site to almost the entire IF domain. This illustrates an effective interplay between the two functional domains of SlyD* to facilitate protein folding catalysis.</description><subject>Binding Sites</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Models, Molecular</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Peptidylprolyl Isomerase - chemistry</subject><subject>Peptidylprolyl Isomerase - metabolism</subject><subject>Protein Folding</subject><subject>Ribonuclease T1 - chemistry</subject><subject>Ribonuclease T1 - metabolism</subject><subject>Substrate Specificity</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkMtOwzAQRS0EoqWw4AdQNgixCPgRx84SVeUhtSCVso4ce4xSJXGxk0W74h_4Q76EoJauWM2M7tGV5iB0TvANwZTcLhXFBONEHqAh4RTHnND0EA0xxjQWMmUDdBLCsj8TKskxGlCSpkTQbIjGC6-aUELTRpNms67h-_PrtStC61UL0Ry0e2_KtnRNNHP94jyYqFj3gariRVlD9Dybn6Ijq6oAZ7s5Qm_3k8X4MZ6-PDyN76axYiRpY2sypUWSCZ7ajGFBCpooo5gEmUnGeWIsp9rQjEosjE2pBlkwAdYyI4i2bISutr0r7z46CG1el0FDVakGXBdyKQXHQsisJ6-3pPYuBA82X_myVn6dE5z_Ksv3ynr2YtfaFTWYPfnnqAcut4DSIV-6zjf9k_8U_QDhMnIH</recordid><startdate>20110727</startdate><enddate>20110727</enddate><creator>Haupt, Caroline</creator><creator>Patzschke, Rica</creator><creator>Weininger, Ulrich</creator><creator>Gröger, Stefan</creator><creator>Kovermann, Michael</creator><creator>Balbach, Jochen</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110727</creationdate><title>Transient Enzyme–Substrate Recognition Monitored by Real-Time NMR</title><author>Haupt, Caroline ; Patzschke, Rica ; Weininger, Ulrich ; Gröger, Stefan ; Kovermann, Michael ; Balbach, Jochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a314t-fd9ac749756f93071b24ada38e8983554df52cd292807df62ce8b37eff3d71cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Binding Sites</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Models, Molecular</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Peptidylprolyl Isomerase - chemistry</topic><topic>Peptidylprolyl Isomerase - metabolism</topic><topic>Protein Folding</topic><topic>Ribonuclease T1 - chemistry</topic><topic>Ribonuclease T1 - metabolism</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haupt, Caroline</creatorcontrib><creatorcontrib>Patzschke, Rica</creatorcontrib><creatorcontrib>Weininger, Ulrich</creatorcontrib><creatorcontrib>Gröger, Stefan</creatorcontrib><creatorcontrib>Kovermann, Michael</creatorcontrib><creatorcontrib>Balbach, Jochen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haupt, Caroline</au><au>Patzschke, Rica</au><au>Weininger, Ulrich</au><au>Gröger, Stefan</au><au>Kovermann, Michael</au><au>Balbach, Jochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient Enzyme–Substrate Recognition Monitored by Real-Time NMR</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2011-07-27</date><risdate>2011</risdate><volume>133</volume><issue>29</issue><spage>11154</spage><epage>11162</epage><pages>11154-11162</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Slow protein folding processes during which kinetic folding intermediates occur for an extended time can lead to aggregation and dysfunction in living cells. Therefore, protein folding helpers have evolved, which prevent proteins from aggregation and/or speed up folding processes. In this study, we present the structural characterization of a long-living transient folding intermediate of RNase T1 (S54G/P55N) by time-resolved NMR spectroscopy. NMR resonances of this kinetic folding intermediate could be assigned mainly by a real-time 3D BEST-HNCA. These assignments were the basis to investigate the interaction sites between the protein folding helper enzyme SlyD(1-165) (SlyD*) from Escherichia coli (E. coli) and this kinetic intermediate at a residue resolution. Thus, we investigated the Michaelis–Menten complex of this enzyme reaction, because the NMR data acquisition was performed during the actual catalysis. The interaction surface of the transient folding intermediate is restricted to a region around the peptidyl–prolyl bond (Y38–P39), whose isomerization is catalyzed by SlyD*. The interaction surface regarding SlyD* extends from specific amino acids of the FKBP domain forming the peptidyl-prolyl cis/trans-isomerase active site to almost the entire IF domain. This illustrates an effective interplay between the two functional domains of SlyD* to facilitate protein folding catalysis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>21661729</pmid><doi>10.1021/ja2010048</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2011-07, Vol.133 (29), p.11154-11162
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_887507789
source MEDLINE; ACS Publications
subjects Binding Sites
Escherichia coli - chemistry
Escherichia coli - enzymology
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - metabolism
Models, Molecular
Nuclear Magnetic Resonance, Biomolecular
Peptidylprolyl Isomerase - chemistry
Peptidylprolyl Isomerase - metabolism
Protein Folding
Ribonuclease T1 - chemistry
Ribonuclease T1 - metabolism
Substrate Specificity
title Transient Enzyme–Substrate Recognition Monitored by Real-Time NMR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A50%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20Enzyme%E2%80%93Substrate%20Recognition%20Monitored%20by%20Real-Time%20NMR&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Haupt,%20Caroline&rft.date=2011-07-27&rft.volume=133&rft.issue=29&rft.spage=11154&rft.epage=11162&rft.pages=11154-11162&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja2010048&rft_dat=%3Cproquest_cross%3E887507789%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=887507789&rft_id=info:pmid/21661729&rfr_iscdi=true