Synthesis and efficient hepatocyte targeting of galactosylated chitosan as a gene carrier in vitro and in vivo

While chitosan (CS) has been researched widely as a non‐viral vector, its usefulness has been limited by its low cell specificity and transfection efficiency. Therefore, we successfully synthesized galactosylated chitosan (GC) and complexed it with an enhanced green fluorescent protein plasmid (pIRE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2011-10, Vol.99B (1), p.70-80
Hauptverfasser: Cheng, Mingrong, Li, Qing, Wan, Tao, Hong, Xiaowu, Chen, Houxiang, He, Bing, Cheng, Zhijian, Xu, Hongzhi, Ye, Tao, Zha, Bingbing, Wu, Jingbo, Zhou, Runjiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 80
container_issue 1
container_start_page 70
container_title Journal of biomedical materials research. Part B, Applied biomaterials
container_volume 99B
creator Cheng, Mingrong
Li, Qing
Wan, Tao
Hong, Xiaowu
Chen, Houxiang
He, Bing
Cheng, Zhijian
Xu, Hongzhi
Ye, Tao
Zha, Bingbing
Wu, Jingbo
Zhou, Runjiao
description While chitosan (CS) has been researched widely as a non‐viral vector, its usefulness has been limited by its low cell specificity and transfection efficiency. Therefore, we successfully synthesized galactosylated chitosan (GC) and complexed it with an enhanced green fluorescent protein plasmid (pIRES‐EGFP) for transfection into cultured H22 cells (murine hepatic cancer cell line) using various GC/EGFP (N/P) charge ratios. Maximal gene transfection rates detected by flow cytometry occurred at an N/P ratio 5:1. Compared with those of lipofectin/EGFP and naked pIRES‐EGFP, GC/EGFP complexes show a very efficient cell‐selective transfection to hepatocytes. The MTT assay detected relatively low cytotoxicity in cells transfected with GC. A recombinant plasmid granulocyte‐macrophage colony‐stimulating factor (GM‐SCF) and interleukin (IL) 21 (pIRES/GM‐CSF‐IL21) was successfully constructed and GC/GM‐CSF‐IL21 nanoparticles (average diameter, 82.1 nm) were administered via the tail vein of mice with liver metastasis of colon cancer model, for 5 consecutive days. The GC/GM‐CSF‐IL21 nanoparticles exhibited hepatocyte and passive tumor specificity, increased therapeutic efficacy compared to control groups, promoted leukocytes to aggregate in tumor tissues, and activated the cytotoxicity of natural killer (NK) cells and cytolytic T lymphocyte (CTL). Our results indicate that GC can be used in gene therapy to improve transfection efficiency and can be used as an immunological stimulant in vivo. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2011.
doi_str_mv 10.1002/jbm.b.31873
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_887504152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1017979199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4313-a1cff9ba8c54134ba46cd43fafc128c7f9b81de310fc57d7895c4b1f7ca6ccf93</originalsourceid><addsrcrecordid>eNp90ctv1DAQB-AIgegDTtyRLwgklCWO7dg5thUtoPIQDyH1Yk0m9q5L1llsbyH_Pe7udrn1ZI_8zW8kT1E8o9WMVlX95rpbzroZo0qyB8UhFaIueavow_1dsoPiKMbrjJtKsMfFQU0b0TSNPCz8t8mnhYkuEvA9MdY6dMYnsjArSCNOyZAEYW6S83MyWjKHATCNcRogmZ7gwuUCPIEcQObGG4IQgjOBOE9uXArjJnhT3IxPikcWhmie7s7j4sf52-9n78rLzxfvz04uS-SMshIoWtt2oFBwyngHvMGeMwsWaa1Q5jdFe8NoZVHIXqpWIO-olQgNom3ZcfFym7sK4--1iUkvXUQzDODNuI5aKSkqTkWd5at7Ja2obGVL29vQ11uKYYwxGKtXwS0hTBnp21XovArd6c0qsn6-C153S9Pv7d3fZ_BiByAiDDaARxf_Oy44Z0pkR7fujxvMdN9M_eH0493wctvjYjJ_9z0Qfuk8WQr989OFZvXX-oqfftFX7B9cB7H4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017979199</pqid></control><display><type>article</type><title>Synthesis and efficient hepatocyte targeting of galactosylated chitosan as a gene carrier in vitro and in vivo</title><source>MEDLINE</source><source>Wiley Blackwell Single Titles</source><creator>Cheng, Mingrong ; Li, Qing ; Wan, Tao ; Hong, Xiaowu ; Chen, Houxiang ; He, Bing ; Cheng, Zhijian ; Xu, Hongzhi ; Ye, Tao ; Zha, Bingbing ; Wu, Jingbo ; Zhou, Runjiao</creator><creatorcontrib>Cheng, Mingrong ; Li, Qing ; Wan, Tao ; Hong, Xiaowu ; Chen, Houxiang ; He, Bing ; Cheng, Zhijian ; Xu, Hongzhi ; Ye, Tao ; Zha, Bingbing ; Wu, Jingbo ; Zhou, Runjiao</creatorcontrib><description>While chitosan (CS) has been researched widely as a non‐viral vector, its usefulness has been limited by its low cell specificity and transfection efficiency. Therefore, we successfully synthesized galactosylated chitosan (GC) and complexed it with an enhanced green fluorescent protein plasmid (pIRES‐EGFP) for transfection into cultured H22 cells (murine hepatic cancer cell line) using various GC/EGFP (N/P) charge ratios. Maximal gene transfection rates detected by flow cytometry occurred at an N/P ratio 5:1. Compared with those of lipofectin/EGFP and naked pIRES‐EGFP, GC/EGFP complexes show a very efficient cell‐selective transfection to hepatocytes. The MTT assay detected relatively low cytotoxicity in cells transfected with GC. A recombinant plasmid granulocyte‐macrophage colony‐stimulating factor (GM‐SCF) and interleukin (IL) 21 (pIRES/GM‐CSF‐IL21) was successfully constructed and GC/GM‐CSF‐IL21 nanoparticles (average diameter, 82.1 nm) were administered via the tail vein of mice with liver metastasis of colon cancer model, for 5 consecutive days. The GC/GM‐CSF‐IL21 nanoparticles exhibited hepatocyte and passive tumor specificity, increased therapeutic efficacy compared to control groups, promoted leukocytes to aggregate in tumor tissues, and activated the cytotoxicity of natural killer (NK) cells and cytolytic T lymphocyte (CTL). Our results indicate that GC can be used in gene therapy to improve transfection efficiency and can be used as an immunological stimulant in vivo. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2011.</description><identifier>ISSN: 1552-4973</identifier><identifier>ISSN: 1552-4981</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.31873</identifier><identifier>PMID: 21656667</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; Animals ; Applied cell therapy and gene therapy ; Biological and medical sciences ; Cell Line, Tumor ; Chitosan - chemistry ; Chitosan - metabolism ; Colonic Neoplasms - pathology ; Female ; Galactose - chemistry ; galactosylated chitosan ; gene delivery ; gene therapy ; Genetic Vectors - chemistry ; Genetic Vectors - metabolism ; Granulocyte-Macrophage Colony-Stimulating Factor - genetics ; Granulocyte-Macrophage Colony-Stimulating Factor - metabolism ; hepatocyte-targeting ; Hepatocytes - cytology ; Hepatocytes - metabolism ; Interleukins - genetics ; Interleukins - metabolism ; Liver Neoplasms - genetics ; Liver Neoplasms - metabolism ; Liver Neoplasms - secondary ; Liver Neoplasms - therapy ; Materials Testing ; Medical sciences ; Mice ; Mice, Inbred BALB C ; Molecular Structure ; Nanoparticles ; Random Allocation ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Spectroscopy, Fourier Transform Infrared ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology. Biomaterials. Equipments ; Tissue Distribution ; Transfection - methods ; transfection efficiency ; Transfusions. Complications. Transfusion reactions. Cell and gene therapy</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2011-10, Vol.99B (1), p.70-80</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4313-a1cff9ba8c54134ba46cd43fafc128c7f9b81de310fc57d7895c4b1f7ca6ccf93</citedby><cites>FETCH-LOGICAL-c4313-a1cff9ba8c54134ba46cd43fafc128c7f9b81de310fc57d7895c4b1f7ca6ccf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.b.31873$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.b.31873$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24544385$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21656667$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Mingrong</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Wan, Tao</creatorcontrib><creatorcontrib>Hong, Xiaowu</creatorcontrib><creatorcontrib>Chen, Houxiang</creatorcontrib><creatorcontrib>He, Bing</creatorcontrib><creatorcontrib>Cheng, Zhijian</creatorcontrib><creatorcontrib>Xu, Hongzhi</creatorcontrib><creatorcontrib>Ye, Tao</creatorcontrib><creatorcontrib>Zha, Bingbing</creatorcontrib><creatorcontrib>Wu, Jingbo</creatorcontrib><creatorcontrib>Zhou, Runjiao</creatorcontrib><title>Synthesis and efficient hepatocyte targeting of galactosylated chitosan as a gene carrier in vitro and in vivo</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J. Biomed. Mater. Res</addtitle><description>While chitosan (CS) has been researched widely as a non‐viral vector, its usefulness has been limited by its low cell specificity and transfection efficiency. Therefore, we successfully synthesized galactosylated chitosan (GC) and complexed it with an enhanced green fluorescent protein plasmid (pIRES‐EGFP) for transfection into cultured H22 cells (murine hepatic cancer cell line) using various GC/EGFP (N/P) charge ratios. Maximal gene transfection rates detected by flow cytometry occurred at an N/P ratio 5:1. Compared with those of lipofectin/EGFP and naked pIRES‐EGFP, GC/EGFP complexes show a very efficient cell‐selective transfection to hepatocytes. The MTT assay detected relatively low cytotoxicity in cells transfected with GC. A recombinant plasmid granulocyte‐macrophage colony‐stimulating factor (GM‐SCF) and interleukin (IL) 21 (pIRES/GM‐CSF‐IL21) was successfully constructed and GC/GM‐CSF‐IL21 nanoparticles (average diameter, 82.1 nm) were administered via the tail vein of mice with liver metastasis of colon cancer model, for 5 consecutive days. The GC/GM‐CSF‐IL21 nanoparticles exhibited hepatocyte and passive tumor specificity, increased therapeutic efficacy compared to control groups, promoted leukocytes to aggregate in tumor tissues, and activated the cytotoxicity of natural killer (NK) cells and cytolytic T lymphocyte (CTL). Our results indicate that GC can be used in gene therapy to improve transfection efficiency and can be used as an immunological stimulant in vivo. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2011.</description><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>Animals</subject><subject>Applied cell therapy and gene therapy</subject><subject>Biological and medical sciences</subject><subject>Cell Line, Tumor</subject><subject>Chitosan - chemistry</subject><subject>Chitosan - metabolism</subject><subject>Colonic Neoplasms - pathology</subject><subject>Female</subject><subject>Galactose - chemistry</subject><subject>galactosylated chitosan</subject><subject>gene delivery</subject><subject>gene therapy</subject><subject>Genetic Vectors - chemistry</subject><subject>Genetic Vectors - metabolism</subject><subject>Granulocyte-Macrophage Colony-Stimulating Factor - genetics</subject><subject>Granulocyte-Macrophage Colony-Stimulating Factor - metabolism</subject><subject>hepatocyte-targeting</subject><subject>Hepatocytes - cytology</subject><subject>Hepatocytes - metabolism</subject><subject>Interleukins - genetics</subject><subject>Interleukins - metabolism</subject><subject>Liver Neoplasms - genetics</subject><subject>Liver Neoplasms - metabolism</subject><subject>Liver Neoplasms - secondary</subject><subject>Liver Neoplasms - therapy</subject><subject>Materials Testing</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Molecular Structure</subject><subject>Nanoparticles</subject><subject>Random Allocation</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Tissue Distribution</subject><subject>Transfection - methods</subject><subject>transfection efficiency</subject><subject>Transfusions. Complications. Transfusion reactions. Cell and gene therapy</subject><issn>1552-4973</issn><issn>1552-4981</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90ctv1DAQB-AIgegDTtyRLwgklCWO7dg5thUtoPIQDyH1Yk0m9q5L1llsbyH_Pe7udrn1ZI_8zW8kT1E8o9WMVlX95rpbzroZo0qyB8UhFaIueavow_1dsoPiKMbrjJtKsMfFQU0b0TSNPCz8t8mnhYkuEvA9MdY6dMYnsjArSCNOyZAEYW6S83MyWjKHATCNcRogmZ7gwuUCPIEcQObGG4IQgjOBOE9uXArjJnhT3IxPikcWhmie7s7j4sf52-9n78rLzxfvz04uS-SMshIoWtt2oFBwyngHvMGeMwsWaa1Q5jdFe8NoZVHIXqpWIO-olQgNom3ZcfFym7sK4--1iUkvXUQzDODNuI5aKSkqTkWd5at7Ja2obGVL29vQ11uKYYwxGKtXwS0hTBnp21XovArd6c0qsn6-C153S9Pv7d3fZ_BiByAiDDaARxf_Oy44Z0pkR7fujxvMdN9M_eH0493wctvjYjJ_9z0Qfuk8WQr989OFZvXX-oqfftFX7B9cB7H4</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Cheng, Mingrong</creator><creator>Li, Qing</creator><creator>Wan, Tao</creator><creator>Hong, Xiaowu</creator><creator>Chen, Houxiang</creator><creator>He, Bing</creator><creator>Cheng, Zhijian</creator><creator>Xu, Hongzhi</creator><creator>Ye, Tao</creator><creator>Zha, Bingbing</creator><creator>Wu, Jingbo</creator><creator>Zhou, Runjiao</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201110</creationdate><title>Synthesis and efficient hepatocyte targeting of galactosylated chitosan as a gene carrier in vitro and in vivo</title><author>Cheng, Mingrong ; Li, Qing ; Wan, Tao ; Hong, Xiaowu ; Chen, Houxiang ; He, Bing ; Cheng, Zhijian ; Xu, Hongzhi ; Ye, Tao ; Zha, Bingbing ; Wu, Jingbo ; Zhou, Runjiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4313-a1cff9ba8c54134ba46cd43fafc128c7f9b81de310fc57d7895c4b1f7ca6ccf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>Animals</topic><topic>Applied cell therapy and gene therapy</topic><topic>Biological and medical sciences</topic><topic>Cell Line, Tumor</topic><topic>Chitosan - chemistry</topic><topic>Chitosan - metabolism</topic><topic>Colonic Neoplasms - pathology</topic><topic>Female</topic><topic>Galactose - chemistry</topic><topic>galactosylated chitosan</topic><topic>gene delivery</topic><topic>gene therapy</topic><topic>Genetic Vectors - chemistry</topic><topic>Genetic Vectors - metabolism</topic><topic>Granulocyte-Macrophage Colony-Stimulating Factor - genetics</topic><topic>Granulocyte-Macrophage Colony-Stimulating Factor - metabolism</topic><topic>hepatocyte-targeting</topic><topic>Hepatocytes - cytology</topic><topic>Hepatocytes - metabolism</topic><topic>Interleukins - genetics</topic><topic>Interleukins - metabolism</topic><topic>Liver Neoplasms - genetics</topic><topic>Liver Neoplasms - metabolism</topic><topic>Liver Neoplasms - secondary</topic><topic>Liver Neoplasms - therapy</topic><topic>Materials Testing</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Molecular Structure</topic><topic>Nanoparticles</topic><topic>Random Allocation</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Tissue Distribution</topic><topic>Transfection - methods</topic><topic>transfection efficiency</topic><topic>Transfusions. Complications. Transfusion reactions. Cell and gene therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Mingrong</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Wan, Tao</creatorcontrib><creatorcontrib>Hong, Xiaowu</creatorcontrib><creatorcontrib>Chen, Houxiang</creatorcontrib><creatorcontrib>He, Bing</creatorcontrib><creatorcontrib>Cheng, Zhijian</creatorcontrib><creatorcontrib>Xu, Hongzhi</creatorcontrib><creatorcontrib>Ye, Tao</creatorcontrib><creatorcontrib>Zha, Bingbing</creatorcontrib><creatorcontrib>Wu, Jingbo</creatorcontrib><creatorcontrib>Zhou, Runjiao</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Mingrong</au><au>Li, Qing</au><au>Wan, Tao</au><au>Hong, Xiaowu</au><au>Chen, Houxiang</au><au>He, Bing</au><au>Cheng, Zhijian</au><au>Xu, Hongzhi</au><au>Ye, Tao</au><au>Zha, Bingbing</au><au>Wu, Jingbo</au><au>Zhou, Runjiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and efficient hepatocyte targeting of galactosylated chitosan as a gene carrier in vitro and in vivo</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2011-10</date><risdate>2011</risdate><volume>99B</volume><issue>1</issue><spage>70</spage><epage>80</epage><pages>70-80</pages><issn>1552-4973</issn><issn>1552-4981</issn><eissn>1552-4981</eissn><abstract>While chitosan (CS) has been researched widely as a non‐viral vector, its usefulness has been limited by its low cell specificity and transfection efficiency. Therefore, we successfully synthesized galactosylated chitosan (GC) and complexed it with an enhanced green fluorescent protein plasmid (pIRES‐EGFP) for transfection into cultured H22 cells (murine hepatic cancer cell line) using various GC/EGFP (N/P) charge ratios. Maximal gene transfection rates detected by flow cytometry occurred at an N/P ratio 5:1. Compared with those of lipofectin/EGFP and naked pIRES‐EGFP, GC/EGFP complexes show a very efficient cell‐selective transfection to hepatocytes. The MTT assay detected relatively low cytotoxicity in cells transfected with GC. A recombinant plasmid granulocyte‐macrophage colony‐stimulating factor (GM‐SCF) and interleukin (IL) 21 (pIRES/GM‐CSF‐IL21) was successfully constructed and GC/GM‐CSF‐IL21 nanoparticles (average diameter, 82.1 nm) were administered via the tail vein of mice with liver metastasis of colon cancer model, for 5 consecutive days. The GC/GM‐CSF‐IL21 nanoparticles exhibited hepatocyte and passive tumor specificity, increased therapeutic efficacy compared to control groups, promoted leukocytes to aggregate in tumor tissues, and activated the cytotoxicity of natural killer (NK) cells and cytolytic T lymphocyte (CTL). Our results indicate that GC can be used in gene therapy to improve transfection efficiency and can be used as an immunological stimulant in vivo. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2011.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21656667</pmid><doi>10.1002/jbm.b.31873</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1552-4973
ispartof Journal of biomedical materials research. Part B, Applied biomaterials, 2011-10, Vol.99B (1), p.70-80
issn 1552-4973
1552-4981
1552-4981
language eng
recordid cdi_proquest_miscellaneous_887504152
source MEDLINE; Wiley Blackwell Single Titles
subjects Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
Animals
Applied cell therapy and gene therapy
Biological and medical sciences
Cell Line, Tumor
Chitosan - chemistry
Chitosan - metabolism
Colonic Neoplasms - pathology
Female
Galactose - chemistry
galactosylated chitosan
gene delivery
gene therapy
Genetic Vectors - chemistry
Genetic Vectors - metabolism
Granulocyte-Macrophage Colony-Stimulating Factor - genetics
Granulocyte-Macrophage Colony-Stimulating Factor - metabolism
hepatocyte-targeting
Hepatocytes - cytology
Hepatocytes - metabolism
Interleukins - genetics
Interleukins - metabolism
Liver Neoplasms - genetics
Liver Neoplasms - metabolism
Liver Neoplasms - secondary
Liver Neoplasms - therapy
Materials Testing
Medical sciences
Mice
Mice, Inbred BALB C
Molecular Structure
Nanoparticles
Random Allocation
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Spectroscopy, Fourier Transform Infrared
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Technology. Biomaterials. Equipments
Tissue Distribution
Transfection - methods
transfection efficiency
Transfusions. Complications. Transfusion reactions. Cell and gene therapy
title Synthesis and efficient hepatocyte targeting of galactosylated chitosan as a gene carrier in vitro and in vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A29%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20efficient%20hepatocyte%20targeting%20of%20galactosylated%20chitosan%20as%20a%20gene%20carrier%20in%20vitro%20and%20in%20vivo&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Cheng,%20Mingrong&rft.date=2011-10&rft.volume=99B&rft.issue=1&rft.spage=70&rft.epage=80&rft.pages=70-80&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.31873&rft_dat=%3Cproquest_cross%3E1017979199%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1017979199&rft_id=info:pmid/21656667&rfr_iscdi=true