Design of Aptamer-Based Sensing Platform Using Triple-Helix Molecular Switch

For successful assay development of an aptamer-based biosensor, various design principles and strategies, including a highly selective molecular recognition element and a novel signal transduction mechanism, have to be engineered together. Herein, we report a new type of aptamer-based sensing platfo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2011-09, Vol.83 (17), p.6586-6592
Hauptverfasser: Zheng, Jing, Li, Jishan, Jiang, Ying, Jin, Jianyu, Wang, Kemin, Yang, Ronghua, Tan, Weihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6592
container_issue 17
container_start_page 6586
container_title Analytical chemistry (Washington)
container_volume 83
creator Zheng, Jing
Li, Jishan
Jiang, Ying
Jin, Jianyu
Wang, Kemin
Yang, Ronghua
Tan, Weihong
description For successful assay development of an aptamer-based biosensor, various design principles and strategies, including a highly selective molecular recognition element and a novel signal transduction mechanism, have to be engineered together. Herein, we report a new type of aptamer-based sensing platform which is based on a triple-helix molecular switch (THMS). The THMS consists of a central, target specific aptamer sequence flanked by two arm segments and a dual-labeled oligonucleotide serving as a signal transduction probe (STP). The STP is doubly labeled with pyrene at the 5′- and 3′-end, respectively, and initially designed as a hairpin-shaped structure, thus, bringing the two pyrenes into spacer proximity. Bindings of two arm segments of the aptamer with the loop sequence of STP enforce the STP to form an “open” configuration. Formation of aptamer/target complex releases the STP, leading to new signal readout. To demonstrate the feasibility and universality of our design, three aptamers which bind to human α-thrombin (Tmb), adenosine triphosphate (ATP), and l-argininamide (L-Arm), respectively, were selected as models. The universality of the approach is achieved by virtue of altering the aptamer sequence without change of the triple-helix structure.
doi_str_mv 10.1021/ac201314y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_887500760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>887500760</sourcerecordid><originalsourceid>FETCH-LOGICAL-a371t-c400cb68f02f28bf66132f066f920aef84d967d707e7fc5699b000450e8f258c3</originalsourceid><addsrcrecordid>eNpl0FtLwzAUB_AgipvTB7-AFEHEh-pJ2ibp45yXCROFbc8lTZPZkV5MWnTf3urmBvp0OPDjXP4InWK4xkDwjZAEcIDD1R7q44iATzkn-6gPAIFPGEAPHTm3BMAYMD1EPYJZHESc9dHkTrl8UXqV9oZ1Iwpl_VvhVOZNVenycuG9GtHoyhbe_Ked2bw2yh8rk396z5VRsjXCetOPvJFvx-hAC-PUyaYO0PzhfjYa-5OXx6fRcOKLgOHGlyGATCnXQDThqaYUB0QDpTomIJTmYRZTljFgimkZ0ThOu0_CCBTXJOIyGKDL9dzaVu-tck1S5E4qY0SpqtYlnLMIgFHo5PkfuaxaW3bHdSiOMQGOO3S1RtJWzlmlk9rmhbCrBEPyHXCyDbizZ5uBbVqobCt_E-3AxQYIJ4XRVpQydzsXhjxgEO-ckG531P-FX6l6jCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889912081</pqid></control><display><type>article</type><title>Design of Aptamer-Based Sensing Platform Using Triple-Helix Molecular Switch</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Zheng, Jing ; Li, Jishan ; Jiang, Ying ; Jin, Jianyu ; Wang, Kemin ; Yang, Ronghua ; Tan, Weihong</creator><creatorcontrib>Zheng, Jing ; Li, Jishan ; Jiang, Ying ; Jin, Jianyu ; Wang, Kemin ; Yang, Ronghua ; Tan, Weihong</creatorcontrib><description>For successful assay development of an aptamer-based biosensor, various design principles and strategies, including a highly selective molecular recognition element and a novel signal transduction mechanism, have to be engineered together. Herein, we report a new type of aptamer-based sensing platform which is based on a triple-helix molecular switch (THMS). The THMS consists of a central, target specific aptamer sequence flanked by two arm segments and a dual-labeled oligonucleotide serving as a signal transduction probe (STP). The STP is doubly labeled with pyrene at the 5′- and 3′-end, respectively, and initially designed as a hairpin-shaped structure, thus, bringing the two pyrenes into spacer proximity. Bindings of two arm segments of the aptamer with the loop sequence of STP enforce the STP to form an “open” configuration. Formation of aptamer/target complex releases the STP, leading to new signal readout. To demonstrate the feasibility and universality of our design, three aptamers which bind to human α-thrombin (Tmb), adenosine triphosphate (ATP), and l-argininamide (L-Arm), respectively, were selected as models. The universality of the approach is achieved by virtue of altering the aptamer sequence without change of the triple-helix structure.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac201314y</identifier><identifier>PMID: 21793587</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adenosine Triphosphate - chemistry ; Analytical chemistry ; Aptamers, Nucleotide - chemistry ; Aptamers, Nucleotide - metabolism ; Arginine - analogs &amp; derivatives ; Arginine - chemistry ; Binding sites ; Biological and medical sciences ; Biosensing Techniques - methods ; Biosensors ; Biotechnology ; Cell physiology ; Chemical compounds ; Chemistry ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General, instrumentation ; Humans ; Kinetics ; Methods. Procedures. Technologies ; Molecular and cellular biology ; Molecular structure ; Oligonucleotides - chemistry ; Protein Binding ; Pyrenes - chemistry ; Signal transduction ; Spectrometry, Fluorescence ; Thermodynamics ; Thrombin - chemistry ; Thrombin - metabolism ; Various methods and equipments</subject><ispartof>Analytical chemistry (Washington), 2011-09, Vol.83 (17), p.6586-6592</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Sep 1, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a371t-c400cb68f02f28bf66132f066f920aef84d967d707e7fc5699b000450e8f258c3</citedby><cites>FETCH-LOGICAL-a371t-c400cb68f02f28bf66132f066f920aef84d967d707e7fc5699b000450e8f258c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac201314y$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac201314y$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24483709$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21793587$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Jing</creatorcontrib><creatorcontrib>Li, Jishan</creatorcontrib><creatorcontrib>Jiang, Ying</creatorcontrib><creatorcontrib>Jin, Jianyu</creatorcontrib><creatorcontrib>Wang, Kemin</creatorcontrib><creatorcontrib>Yang, Ronghua</creatorcontrib><creatorcontrib>Tan, Weihong</creatorcontrib><title>Design of Aptamer-Based Sensing Platform Using Triple-Helix Molecular Switch</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>For successful assay development of an aptamer-based biosensor, various design principles and strategies, including a highly selective molecular recognition element and a novel signal transduction mechanism, have to be engineered together. Herein, we report a new type of aptamer-based sensing platform which is based on a triple-helix molecular switch (THMS). The THMS consists of a central, target specific aptamer sequence flanked by two arm segments and a dual-labeled oligonucleotide serving as a signal transduction probe (STP). The STP is doubly labeled with pyrene at the 5′- and 3′-end, respectively, and initially designed as a hairpin-shaped structure, thus, bringing the two pyrenes into spacer proximity. Bindings of two arm segments of the aptamer with the loop sequence of STP enforce the STP to form an “open” configuration. Formation of aptamer/target complex releases the STP, leading to new signal readout. To demonstrate the feasibility and universality of our design, three aptamers which bind to human α-thrombin (Tmb), adenosine triphosphate (ATP), and l-argininamide (L-Arm), respectively, were selected as models. The universality of the approach is achieved by virtue of altering the aptamer sequence without change of the triple-helix structure.</description><subject>Adenosine Triphosphate - chemistry</subject><subject>Analytical chemistry</subject><subject>Aptamers, Nucleotide - chemistry</subject><subject>Aptamers, Nucleotide - metabolism</subject><subject>Arginine - analogs &amp; derivatives</subject><subject>Arginine - chemistry</subject><subject>Binding sites</subject><subject>Biological and medical sciences</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Cell physiology</subject><subject>Chemical compounds</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General, instrumentation</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Methods. Procedures. Technologies</subject><subject>Molecular and cellular biology</subject><subject>Molecular structure</subject><subject>Oligonucleotides - chemistry</subject><subject>Protein Binding</subject><subject>Pyrenes - chemistry</subject><subject>Signal transduction</subject><subject>Spectrometry, Fluorescence</subject><subject>Thermodynamics</subject><subject>Thrombin - chemistry</subject><subject>Thrombin - metabolism</subject><subject>Various methods and equipments</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0FtLwzAUB_AgipvTB7-AFEHEh-pJ2ibp45yXCROFbc8lTZPZkV5MWnTf3urmBvp0OPDjXP4InWK4xkDwjZAEcIDD1R7q44iATzkn-6gPAIFPGEAPHTm3BMAYMD1EPYJZHESc9dHkTrl8UXqV9oZ1Iwpl_VvhVOZNVenycuG9GtHoyhbe_Ked2bw2yh8rk396z5VRsjXCetOPvJFvx-hAC-PUyaYO0PzhfjYa-5OXx6fRcOKLgOHGlyGATCnXQDThqaYUB0QDpTomIJTmYRZTljFgimkZ0ThOu0_CCBTXJOIyGKDL9dzaVu-tck1S5E4qY0SpqtYlnLMIgFHo5PkfuaxaW3bHdSiOMQGOO3S1RtJWzlmlk9rmhbCrBEPyHXCyDbizZ5uBbVqobCt_E-3AxQYIJ4XRVpQydzsXhjxgEO-ckG531P-FX6l6jCM</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Zheng, Jing</creator><creator>Li, Jishan</creator><creator>Jiang, Ying</creator><creator>Jin, Jianyu</creator><creator>Wang, Kemin</creator><creator>Yang, Ronghua</creator><creator>Tan, Weihong</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20110901</creationdate><title>Design of Aptamer-Based Sensing Platform Using Triple-Helix Molecular Switch</title><author>Zheng, Jing ; Li, Jishan ; Jiang, Ying ; Jin, Jianyu ; Wang, Kemin ; Yang, Ronghua ; Tan, Weihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a371t-c400cb68f02f28bf66132f066f920aef84d967d707e7fc5699b000450e8f258c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adenosine Triphosphate - chemistry</topic><topic>Analytical chemistry</topic><topic>Aptamers, Nucleotide - chemistry</topic><topic>Aptamers, Nucleotide - metabolism</topic><topic>Arginine - analogs &amp; derivatives</topic><topic>Arginine - chemistry</topic><topic>Binding sites</topic><topic>Biological and medical sciences</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Cell physiology</topic><topic>Chemical compounds</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General, instrumentation</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Methods. Procedures. Technologies</topic><topic>Molecular and cellular biology</topic><topic>Molecular structure</topic><topic>Oligonucleotides - chemistry</topic><topic>Protein Binding</topic><topic>Pyrenes - chemistry</topic><topic>Signal transduction</topic><topic>Spectrometry, Fluorescence</topic><topic>Thermodynamics</topic><topic>Thrombin - chemistry</topic><topic>Thrombin - metabolism</topic><topic>Various methods and equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Jing</creatorcontrib><creatorcontrib>Li, Jishan</creatorcontrib><creatorcontrib>Jiang, Ying</creatorcontrib><creatorcontrib>Jin, Jianyu</creatorcontrib><creatorcontrib>Wang, Kemin</creatorcontrib><creatorcontrib>Yang, Ronghua</creatorcontrib><creatorcontrib>Tan, Weihong</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Jing</au><au>Li, Jishan</au><au>Jiang, Ying</au><au>Jin, Jianyu</au><au>Wang, Kemin</au><au>Yang, Ronghua</au><au>Tan, Weihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Aptamer-Based Sensing Platform Using Triple-Helix Molecular Switch</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2011-09-01</date><risdate>2011</risdate><volume>83</volume><issue>17</issue><spage>6586</spage><epage>6592</epage><pages>6586-6592</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>For successful assay development of an aptamer-based biosensor, various design principles and strategies, including a highly selective molecular recognition element and a novel signal transduction mechanism, have to be engineered together. Herein, we report a new type of aptamer-based sensing platform which is based on a triple-helix molecular switch (THMS). The THMS consists of a central, target specific aptamer sequence flanked by two arm segments and a dual-labeled oligonucleotide serving as a signal transduction probe (STP). The STP is doubly labeled with pyrene at the 5′- and 3′-end, respectively, and initially designed as a hairpin-shaped structure, thus, bringing the two pyrenes into spacer proximity. Bindings of two arm segments of the aptamer with the loop sequence of STP enforce the STP to form an “open” configuration. Formation of aptamer/target complex releases the STP, leading to new signal readout. To demonstrate the feasibility and universality of our design, three aptamers which bind to human α-thrombin (Tmb), adenosine triphosphate (ATP), and l-argininamide (L-Arm), respectively, were selected as models. The universality of the approach is achieved by virtue of altering the aptamer sequence without change of the triple-helix structure.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21793587</pmid><doi>10.1021/ac201314y</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2011-09, Vol.83 (17), p.6586-6592
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_887500760
source MEDLINE; American Chemical Society Journals
subjects Adenosine Triphosphate - chemistry
Analytical chemistry
Aptamers, Nucleotide - chemistry
Aptamers, Nucleotide - metabolism
Arginine - analogs & derivatives
Arginine - chemistry
Binding sites
Biological and medical sciences
Biosensing Techniques - methods
Biosensors
Biotechnology
Cell physiology
Chemical compounds
Chemistry
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General, instrumentation
Humans
Kinetics
Methods. Procedures. Technologies
Molecular and cellular biology
Molecular structure
Oligonucleotides - chemistry
Protein Binding
Pyrenes - chemistry
Signal transduction
Spectrometry, Fluorescence
Thermodynamics
Thrombin - chemistry
Thrombin - metabolism
Various methods and equipments
title Design of Aptamer-Based Sensing Platform Using Triple-Helix Molecular Switch
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A38%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Aptamer-Based%20Sensing%20Platform%20Using%20Triple-Helix%20Molecular%20Switch&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Zheng,%20Jing&rft.date=2011-09-01&rft.volume=83&rft.issue=17&rft.spage=6586&rft.epage=6592&rft.pages=6586-6592&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac201314y&rft_dat=%3Cproquest_cross%3E887500760%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889912081&rft_id=info:pmid/21793587&rfr_iscdi=true