Single Nanoskived Nanowires for Electrochemical Applications
In this work, we fabricate gold nanowires with well controlled critical dimensions using a recently demonstrated facile approach termed nanoskiving. Nanowires are fabricated with lengths of several hundreds of micrometers and are easily electrically contacted using overlay electrodes. Following fabr...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2011-07, Vol.83 (14), p.5535-5540 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5540 |
---|---|
container_issue | 14 |
container_start_page | 5535 |
container_title | Analytical chemistry (Washington) |
container_volume | 83 |
creator | Dawson, Karen Strutwolf, Jörg Rodgers, Ken P Herzog, Grégoire Arrigan, Damien W. M Quinn, Aidan J O’Riordan, Alan |
description | In this work, we fabricate gold nanowires with well controlled critical dimensions using a recently demonstrated facile approach termed nanoskiving. Nanowires are fabricated with lengths of several hundreds of micrometers and are easily electrically contacted using overlay electrodes. Following fabrication, nanowire device performance is assessed using both electrical and electrochemical characterization techniques. We observe low electrical resistances with typical linear Ohmic responses from fully packaged nanowire devices. Steady-state cyclic voltammograms in ferrocenemonocarboxylic acid demonstrate scan rate independence up to 1000 mV s–1. Electrochemical responses are excellently described by classical Butler–Volmer kinetics, displaying a fast, heterogeneous electron transfer kinetics, k 0 = 2.27 ± 0.02 cm s–1, α = 0.4 ± 0.01. Direct reduction of hydrogen peroxide is observed at nanowires across the 110 pM to 1 mM concentration range, without the need for chemical modification, demonstrating the potential of these devices for electrochemical applications. |
doi_str_mv | 10.1021/ac2004086 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_885912560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2416951201</sourcerecordid><originalsourceid>FETCH-LOGICAL-a371t-46291bbd270c1b2afe0005766c7564c328fd820cb9a670abca5323aee4e88f983</originalsourceid><addsrcrecordid>eNpl0E1Lw0AQBuBFFFurB_-ABEHEQ3R2k-wHeCmlfkDRg3oOm81GtybZupso_ntXW1vQ08zhYeblRegQwzkGgi-kIgApcLqFhjgjEFPOyTYaAkASEwYwQHvezwEwBkx30YBgigWwbIguH0z7XOvoTrbWv5p3Xf6sH8ZpH1XWRdNaq85Z9aIbo2QdjReLOiydsa3fRzuVrL0-WM0RerqaPk5u4tn99e1kPItlwnAXp5QIXBRlSKJwQWSlQ7CMUapYRlOVEF6VnIAqhKQMZKFklpBEap1qzivBkxE6Xd5dOPvWa9_ljfFK17Vste19znkmMMkoBHn8R85t79oQLiAMjKVcBHS2RMpZ752u8oUzjXSfOYb8u9B8XWiwR6uDfdHoci1_GwzgZAWkD_1UTrbK-I1Lk0RwITZOKr8J9f_hF7xDhu4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881077489</pqid></control><display><type>article</type><title>Single Nanoskived Nanowires for Electrochemical Applications</title><source>ACS Publications</source><creator>Dawson, Karen ; Strutwolf, Jörg ; Rodgers, Ken P ; Herzog, Grégoire ; Arrigan, Damien W. M ; Quinn, Aidan J ; O’Riordan, Alan</creator><creatorcontrib>Dawson, Karen ; Strutwolf, Jörg ; Rodgers, Ken P ; Herzog, Grégoire ; Arrigan, Damien W. M ; Quinn, Aidan J ; O’Riordan, Alan</creatorcontrib><description>In this work, we fabricate gold nanowires with well controlled critical dimensions using a recently demonstrated facile approach termed nanoskiving. Nanowires are fabricated with lengths of several hundreds of micrometers and are easily electrically contacted using overlay electrodes. Following fabrication, nanowire device performance is assessed using both electrical and electrochemical characterization techniques. We observe low electrical resistances with typical linear Ohmic responses from fully packaged nanowire devices. Steady-state cyclic voltammograms in ferrocenemonocarboxylic acid demonstrate scan rate independence up to 1000 mV s–1. Electrochemical responses are excellently described by classical Butler–Volmer kinetics, displaying a fast, heterogeneous electron transfer kinetics, k 0 = 2.27 ± 0.02 cm s–1, α = 0.4 ± 0.01. Direct reduction of hydrogen peroxide is observed at nanowires across the 110 pM to 1 mM concentration range, without the need for chemical modification, demonstrating the potential of these devices for electrochemical applications.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac2004086</identifier><identifier>PMID: 21619075</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Chemistry ; Electric resistance ; Electrochemical methods ; Electrodes ; Electron transfer ; Exact sciences and technology ; Hydrogen peroxide ; Nanowires</subject><ispartof>Analytical chemistry (Washington), 2011-07, Vol.83 (14), p.5535-5540</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Jul 15, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a371t-46291bbd270c1b2afe0005766c7564c328fd820cb9a670abca5323aee4e88f983</citedby><cites>FETCH-LOGICAL-a371t-46291bbd270c1b2afe0005766c7564c328fd820cb9a670abca5323aee4e88f983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac2004086$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac2004086$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24339899$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21619075$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dawson, Karen</creatorcontrib><creatorcontrib>Strutwolf, Jörg</creatorcontrib><creatorcontrib>Rodgers, Ken P</creatorcontrib><creatorcontrib>Herzog, Grégoire</creatorcontrib><creatorcontrib>Arrigan, Damien W. M</creatorcontrib><creatorcontrib>Quinn, Aidan J</creatorcontrib><creatorcontrib>O’Riordan, Alan</creatorcontrib><title>Single Nanoskived Nanowires for Electrochemical Applications</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>In this work, we fabricate gold nanowires with well controlled critical dimensions using a recently demonstrated facile approach termed nanoskiving. Nanowires are fabricated with lengths of several hundreds of micrometers and are easily electrically contacted using overlay electrodes. Following fabrication, nanowire device performance is assessed using both electrical and electrochemical characterization techniques. We observe low electrical resistances with typical linear Ohmic responses from fully packaged nanowire devices. Steady-state cyclic voltammograms in ferrocenemonocarboxylic acid demonstrate scan rate independence up to 1000 mV s–1. Electrochemical responses are excellently described by classical Butler–Volmer kinetics, displaying a fast, heterogeneous electron transfer kinetics, k 0 = 2.27 ± 0.02 cm s–1, α = 0.4 ± 0.01. Direct reduction of hydrogen peroxide is observed at nanowires across the 110 pM to 1 mM concentration range, without the need for chemical modification, demonstrating the potential of these devices for electrochemical applications.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Electric resistance</subject><subject>Electrochemical methods</subject><subject>Electrodes</subject><subject>Electron transfer</subject><subject>Exact sciences and technology</subject><subject>Hydrogen peroxide</subject><subject>Nanowires</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpl0E1Lw0AQBuBFFFurB_-ABEHEQ3R2k-wHeCmlfkDRg3oOm81GtybZupso_ntXW1vQ08zhYeblRegQwzkGgi-kIgApcLqFhjgjEFPOyTYaAkASEwYwQHvezwEwBkx30YBgigWwbIguH0z7XOvoTrbWv5p3Xf6sH8ZpH1XWRdNaq85Z9aIbo2QdjReLOiydsa3fRzuVrL0-WM0RerqaPk5u4tn99e1kPItlwnAXp5QIXBRlSKJwQWSlQ7CMUapYRlOVEF6VnIAqhKQMZKFklpBEap1qzivBkxE6Xd5dOPvWa9_ljfFK17Vste19znkmMMkoBHn8R85t79oQLiAMjKVcBHS2RMpZ752u8oUzjXSfOYb8u9B8XWiwR6uDfdHoci1_GwzgZAWkD_1UTrbK-I1Lk0RwITZOKr8J9f_hF7xDhu4</recordid><startdate>20110715</startdate><enddate>20110715</enddate><creator>Dawson, Karen</creator><creator>Strutwolf, Jörg</creator><creator>Rodgers, Ken P</creator><creator>Herzog, Grégoire</creator><creator>Arrigan, Damien W. M</creator><creator>Quinn, Aidan J</creator><creator>O’Riordan, Alan</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20110715</creationdate><title>Single Nanoskived Nanowires for Electrochemical Applications</title><author>Dawson, Karen ; Strutwolf, Jörg ; Rodgers, Ken P ; Herzog, Grégoire ; Arrigan, Damien W. M ; Quinn, Aidan J ; O’Riordan, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a371t-46291bbd270c1b2afe0005766c7564c328fd820cb9a670abca5323aee4e88f983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Electric resistance</topic><topic>Electrochemical methods</topic><topic>Electrodes</topic><topic>Electron transfer</topic><topic>Exact sciences and technology</topic><topic>Hydrogen peroxide</topic><topic>Nanowires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dawson, Karen</creatorcontrib><creatorcontrib>Strutwolf, Jörg</creatorcontrib><creatorcontrib>Rodgers, Ken P</creatorcontrib><creatorcontrib>Herzog, Grégoire</creatorcontrib><creatorcontrib>Arrigan, Damien W. M</creatorcontrib><creatorcontrib>Quinn, Aidan J</creatorcontrib><creatorcontrib>O’Riordan, Alan</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dawson, Karen</au><au>Strutwolf, Jörg</au><au>Rodgers, Ken P</au><au>Herzog, Grégoire</au><au>Arrigan, Damien W. M</au><au>Quinn, Aidan J</au><au>O’Riordan, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single Nanoskived Nanowires for Electrochemical Applications</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2011-07-15</date><risdate>2011</risdate><volume>83</volume><issue>14</issue><spage>5535</spage><epage>5540</epage><pages>5535-5540</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>In this work, we fabricate gold nanowires with well controlled critical dimensions using a recently demonstrated facile approach termed nanoskiving. Nanowires are fabricated with lengths of several hundreds of micrometers and are easily electrically contacted using overlay electrodes. Following fabrication, nanowire device performance is assessed using both electrical and electrochemical characterization techniques. We observe low electrical resistances with typical linear Ohmic responses from fully packaged nanowire devices. Steady-state cyclic voltammograms in ferrocenemonocarboxylic acid demonstrate scan rate independence up to 1000 mV s–1. Electrochemical responses are excellently described by classical Butler–Volmer kinetics, displaying a fast, heterogeneous electron transfer kinetics, k 0 = 2.27 ± 0.02 cm s–1, α = 0.4 ± 0.01. Direct reduction of hydrogen peroxide is observed at nanowires across the 110 pM to 1 mM concentration range, without the need for chemical modification, demonstrating the potential of these devices for electrochemical applications.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21619075</pmid><doi>10.1021/ac2004086</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2011-07, Vol.83 (14), p.5535-5540 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_885912560 |
source | ACS Publications |
subjects | Analytical chemistry Chemistry Electric resistance Electrochemical methods Electrodes Electron transfer Exact sciences and technology Hydrogen peroxide Nanowires |
title | Single Nanoskived Nanowires for Electrochemical Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A28%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20Nanoskived%20Nanowires%20for%20Electrochemical%20Applications&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Dawson,%20Karen&rft.date=2011-07-15&rft.volume=83&rft.issue=14&rft.spage=5535&rft.epage=5540&rft.pages=5535-5540&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac2004086&rft_dat=%3Cproquest_cross%3E2416951201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881077489&rft_id=info:pmid/21619075&rfr_iscdi=true |