Single Nanoskived Nanowires for Electrochemical Applications

In this work, we fabricate gold nanowires with well controlled critical dimensions using a recently demonstrated facile approach termed nanoskiving. Nanowires are fabricated with lengths of several hundreds of micrometers and are easily electrically contacted using overlay electrodes. Following fabr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2011-07, Vol.83 (14), p.5535-5540
Hauptverfasser: Dawson, Karen, Strutwolf, Jörg, Rodgers, Ken P, Herzog, Grégoire, Arrigan, Damien W. M, Quinn, Aidan J, O’Riordan, Alan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5540
container_issue 14
container_start_page 5535
container_title Analytical chemistry (Washington)
container_volume 83
creator Dawson, Karen
Strutwolf, Jörg
Rodgers, Ken P
Herzog, Grégoire
Arrigan, Damien W. M
Quinn, Aidan J
O’Riordan, Alan
description In this work, we fabricate gold nanowires with well controlled critical dimensions using a recently demonstrated facile approach termed nanoskiving. Nanowires are fabricated with lengths of several hundreds of micrometers and are easily electrically contacted using overlay electrodes. Following fabrication, nanowire device performance is assessed using both electrical and electrochemical characterization techniques. We observe low electrical resistances with typical linear Ohmic responses from fully packaged nanowire devices. Steady-state cyclic voltammograms in ferrocenemonocarboxylic acid demonstrate scan rate independence up to 1000 mV s–1. Electrochemical responses are excellently described by classical Butler–Volmer kinetics, displaying a fast, heterogeneous electron transfer kinetics, k 0 = 2.27 ± 0.02 cm s–1, α = 0.4 ± 0.01. Direct reduction of hydrogen peroxide is observed at nanowires across the 110 pM to 1 mM concentration range, without the need for chemical modification, demonstrating the potential of these devices for electrochemical applications.
doi_str_mv 10.1021/ac2004086
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_885912560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2416951201</sourcerecordid><originalsourceid>FETCH-LOGICAL-a371t-46291bbd270c1b2afe0005766c7564c328fd820cb9a670abca5323aee4e88f983</originalsourceid><addsrcrecordid>eNpl0E1Lw0AQBuBFFFurB_-ABEHEQ3R2k-wHeCmlfkDRg3oOm81GtybZupso_ntXW1vQ08zhYeblRegQwzkGgi-kIgApcLqFhjgjEFPOyTYaAkASEwYwQHvezwEwBkx30YBgigWwbIguH0z7XOvoTrbWv5p3Xf6sH8ZpH1XWRdNaq85Z9aIbo2QdjReLOiydsa3fRzuVrL0-WM0RerqaPk5u4tn99e1kPItlwnAXp5QIXBRlSKJwQWSlQ7CMUapYRlOVEF6VnIAqhKQMZKFklpBEap1qzivBkxE6Xd5dOPvWa9_ljfFK17Vste19znkmMMkoBHn8R85t79oQLiAMjKVcBHS2RMpZ752u8oUzjXSfOYb8u9B8XWiwR6uDfdHoci1_GwzgZAWkD_1UTrbK-I1Lk0RwITZOKr8J9f_hF7xDhu4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881077489</pqid></control><display><type>article</type><title>Single Nanoskived Nanowires for Electrochemical Applications</title><source>ACS Publications</source><creator>Dawson, Karen ; Strutwolf, Jörg ; Rodgers, Ken P ; Herzog, Grégoire ; Arrigan, Damien W. M ; Quinn, Aidan J ; O’Riordan, Alan</creator><creatorcontrib>Dawson, Karen ; Strutwolf, Jörg ; Rodgers, Ken P ; Herzog, Grégoire ; Arrigan, Damien W. M ; Quinn, Aidan J ; O’Riordan, Alan</creatorcontrib><description>In this work, we fabricate gold nanowires with well controlled critical dimensions using a recently demonstrated facile approach termed nanoskiving. Nanowires are fabricated with lengths of several hundreds of micrometers and are easily electrically contacted using overlay electrodes. Following fabrication, nanowire device performance is assessed using both electrical and electrochemical characterization techniques. We observe low electrical resistances with typical linear Ohmic responses from fully packaged nanowire devices. Steady-state cyclic voltammograms in ferrocenemonocarboxylic acid demonstrate scan rate independence up to 1000 mV s–1. Electrochemical responses are excellently described by classical Butler–Volmer kinetics, displaying a fast, heterogeneous electron transfer kinetics, k 0 = 2.27 ± 0.02 cm s–1, α = 0.4 ± 0.01. Direct reduction of hydrogen peroxide is observed at nanowires across the 110 pM to 1 mM concentration range, without the need for chemical modification, demonstrating the potential of these devices for electrochemical applications.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac2004086</identifier><identifier>PMID: 21619075</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Chemistry ; Electric resistance ; Electrochemical methods ; Electrodes ; Electron transfer ; Exact sciences and technology ; Hydrogen peroxide ; Nanowires</subject><ispartof>Analytical chemistry (Washington), 2011-07, Vol.83 (14), p.5535-5540</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Jul 15, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a371t-46291bbd270c1b2afe0005766c7564c328fd820cb9a670abca5323aee4e88f983</citedby><cites>FETCH-LOGICAL-a371t-46291bbd270c1b2afe0005766c7564c328fd820cb9a670abca5323aee4e88f983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac2004086$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac2004086$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24339899$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21619075$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dawson, Karen</creatorcontrib><creatorcontrib>Strutwolf, Jörg</creatorcontrib><creatorcontrib>Rodgers, Ken P</creatorcontrib><creatorcontrib>Herzog, Grégoire</creatorcontrib><creatorcontrib>Arrigan, Damien W. M</creatorcontrib><creatorcontrib>Quinn, Aidan J</creatorcontrib><creatorcontrib>O’Riordan, Alan</creatorcontrib><title>Single Nanoskived Nanowires for Electrochemical Applications</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>In this work, we fabricate gold nanowires with well controlled critical dimensions using a recently demonstrated facile approach termed nanoskiving. Nanowires are fabricated with lengths of several hundreds of micrometers and are easily electrically contacted using overlay electrodes. Following fabrication, nanowire device performance is assessed using both electrical and electrochemical characterization techniques. We observe low electrical resistances with typical linear Ohmic responses from fully packaged nanowire devices. Steady-state cyclic voltammograms in ferrocenemonocarboxylic acid demonstrate scan rate independence up to 1000 mV s–1. Electrochemical responses are excellently described by classical Butler–Volmer kinetics, displaying a fast, heterogeneous electron transfer kinetics, k 0 = 2.27 ± 0.02 cm s–1, α = 0.4 ± 0.01. Direct reduction of hydrogen peroxide is observed at nanowires across the 110 pM to 1 mM concentration range, without the need for chemical modification, demonstrating the potential of these devices for electrochemical applications.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Electric resistance</subject><subject>Electrochemical methods</subject><subject>Electrodes</subject><subject>Electron transfer</subject><subject>Exact sciences and technology</subject><subject>Hydrogen peroxide</subject><subject>Nanowires</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpl0E1Lw0AQBuBFFFurB_-ABEHEQ3R2k-wHeCmlfkDRg3oOm81GtybZupso_ntXW1vQ08zhYeblRegQwzkGgi-kIgApcLqFhjgjEFPOyTYaAkASEwYwQHvezwEwBkx30YBgigWwbIguH0z7XOvoTrbWv5p3Xf6sH8ZpH1XWRdNaq85Z9aIbo2QdjReLOiydsa3fRzuVrL0-WM0RerqaPk5u4tn99e1kPItlwnAXp5QIXBRlSKJwQWSlQ7CMUapYRlOVEF6VnIAqhKQMZKFklpBEap1qzivBkxE6Xd5dOPvWa9_ljfFK17Vste19znkmMMkoBHn8R85t79oQLiAMjKVcBHS2RMpZ752u8oUzjXSfOYb8u9B8XWiwR6uDfdHoci1_GwzgZAWkD_1UTrbK-I1Lk0RwITZOKr8J9f_hF7xDhu4</recordid><startdate>20110715</startdate><enddate>20110715</enddate><creator>Dawson, Karen</creator><creator>Strutwolf, Jörg</creator><creator>Rodgers, Ken P</creator><creator>Herzog, Grégoire</creator><creator>Arrigan, Damien W. M</creator><creator>Quinn, Aidan J</creator><creator>O’Riordan, Alan</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20110715</creationdate><title>Single Nanoskived Nanowires for Electrochemical Applications</title><author>Dawson, Karen ; Strutwolf, Jörg ; Rodgers, Ken P ; Herzog, Grégoire ; Arrigan, Damien W. M ; Quinn, Aidan J ; O’Riordan, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a371t-46291bbd270c1b2afe0005766c7564c328fd820cb9a670abca5323aee4e88f983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Electric resistance</topic><topic>Electrochemical methods</topic><topic>Electrodes</topic><topic>Electron transfer</topic><topic>Exact sciences and technology</topic><topic>Hydrogen peroxide</topic><topic>Nanowires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dawson, Karen</creatorcontrib><creatorcontrib>Strutwolf, Jörg</creatorcontrib><creatorcontrib>Rodgers, Ken P</creatorcontrib><creatorcontrib>Herzog, Grégoire</creatorcontrib><creatorcontrib>Arrigan, Damien W. M</creatorcontrib><creatorcontrib>Quinn, Aidan J</creatorcontrib><creatorcontrib>O’Riordan, Alan</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dawson, Karen</au><au>Strutwolf, Jörg</au><au>Rodgers, Ken P</au><au>Herzog, Grégoire</au><au>Arrigan, Damien W. M</au><au>Quinn, Aidan J</au><au>O’Riordan, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single Nanoskived Nanowires for Electrochemical Applications</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2011-07-15</date><risdate>2011</risdate><volume>83</volume><issue>14</issue><spage>5535</spage><epage>5540</epage><pages>5535-5540</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>In this work, we fabricate gold nanowires with well controlled critical dimensions using a recently demonstrated facile approach termed nanoskiving. Nanowires are fabricated with lengths of several hundreds of micrometers and are easily electrically contacted using overlay electrodes. Following fabrication, nanowire device performance is assessed using both electrical and electrochemical characterization techniques. We observe low electrical resistances with typical linear Ohmic responses from fully packaged nanowire devices. Steady-state cyclic voltammograms in ferrocenemonocarboxylic acid demonstrate scan rate independence up to 1000 mV s–1. Electrochemical responses are excellently described by classical Butler–Volmer kinetics, displaying a fast, heterogeneous electron transfer kinetics, k 0 = 2.27 ± 0.02 cm s–1, α = 0.4 ± 0.01. Direct reduction of hydrogen peroxide is observed at nanowires across the 110 pM to 1 mM concentration range, without the need for chemical modification, demonstrating the potential of these devices for electrochemical applications.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21619075</pmid><doi>10.1021/ac2004086</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2011-07, Vol.83 (14), p.5535-5540
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_885912560
source ACS Publications
subjects Analytical chemistry
Chemistry
Electric resistance
Electrochemical methods
Electrodes
Electron transfer
Exact sciences and technology
Hydrogen peroxide
Nanowires
title Single Nanoskived Nanowires for Electrochemical Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A28%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20Nanoskived%20Nanowires%20for%20Electrochemical%20Applications&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Dawson,%20Karen&rft.date=2011-07-15&rft.volume=83&rft.issue=14&rft.spage=5535&rft.epage=5540&rft.pages=5535-5540&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac2004086&rft_dat=%3Cproquest_cross%3E2416951201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881077489&rft_id=info:pmid/21619075&rfr_iscdi=true