Analytically solvable processes on networks
We introduce a broad class of analytically solvable processes on networks. In the special case, they reduce to random walk and consensus process, the two most basic processes on networks. Our class differs from previous models of interactions (such as the stochastic Ising model, cellular automata, i...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2011-07, Vol.84 (1 Pt 2), p.016104-016104, Article 016104 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 016104 |
---|---|
container_issue | 1 Pt 2 |
container_start_page | 016104 |
container_title | Physical review. E, Statistical, nonlinear, and soft matter physics |
container_volume | 84 |
creator | Smilkov, Daniel Kocarev, Ljupco |
description | We introduce a broad class of analytically solvable processes on networks. In the special case, they reduce to random walk and consensus process, the two most basic processes on networks. Our class differs from previous models of interactions (such as the stochastic Ising model, cellular automata, infinite particle systems, and the voter model) in several ways, the two most important being (i) the model is analytically solvable even when the dynamical equation for each node may be different and the network may have an arbitrary finite graph and influence structure and (ii) when local dynamics is described by the same evolution equation, the model is decomposable, with the equilibrium behavior of the system expressed as an explicit function of network topology and node dynamics. |
doi_str_mv | 10.1103/PhysRevE.84.016104 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_885560815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>885560815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-e79aa79866a9312b1a67cd8d8c70fa0e7a1be5c33ce83dba82e372e248ee1c363</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EoqXwBzig3DigFNsbP3KsqvKQKoEQnC3H2YqCm5RsUpR_T6u2nHYOO6OZj7FrwcdCcLh__ezpDTezsc3GXGjBsxM2FErxVILRpzsNeQpGqQG7IPriHCTY7JwNpLDaSJUN2d2k8rFvl8HH2CdUx40vIibrpg5IhJTUVVJh-1s333TJzhY-El4d7oh9PMzep0_p_OXxeTqZpwG4bFM0ufcmt1r7HIQshNcmlLa0wfCF52i8KFAFgIAWysJbiWAkyswiigAaRux2n7tt8dMhtW61pIAx-grrjpy1Smlut-tGTO4_Q1MTNbhw62a58k3vBHc7Ru7IyNnM7RltTTeH-K5YYflvOUKBP3mmZBs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885560815</pqid></control><display><type>article</type><title>Analytically solvable processes on networks</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Smilkov, Daniel ; Kocarev, Ljupco</creator><creatorcontrib>Smilkov, Daniel ; Kocarev, Ljupco</creatorcontrib><description>We introduce a broad class of analytically solvable processes on networks. In the special case, they reduce to random walk and consensus process, the two most basic processes on networks. Our class differs from previous models of interactions (such as the stochastic Ising model, cellular automata, infinite particle systems, and the voter model) in several ways, the two most important being (i) the model is analytically solvable even when the dynamical equation for each node may be different and the network may have an arbitrary finite graph and influence structure and (ii) when local dynamics is described by the same evolution equation, the model is decomposable, with the equilibrium behavior of the system expressed as an explicit function of network topology and node dynamics.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.84.016104</identifier><identifier>PMID: 21867254</identifier><language>eng</language><publisher>United States</publisher><subject>Linear Models ; Markov Chains ; Models, Theoretical</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2011-07, Vol.84 (1 Pt 2), p.016104-016104, Article 016104</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-e79aa79866a9312b1a67cd8d8c70fa0e7a1be5c33ce83dba82e372e248ee1c363</citedby><cites>FETCH-LOGICAL-c302t-e79aa79866a9312b1a67cd8d8c70fa0e7a1be5c33ce83dba82e372e248ee1c363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21867254$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smilkov, Daniel</creatorcontrib><creatorcontrib>Kocarev, Ljupco</creatorcontrib><title>Analytically solvable processes on networks</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We introduce a broad class of analytically solvable processes on networks. In the special case, they reduce to random walk and consensus process, the two most basic processes on networks. Our class differs from previous models of interactions (such as the stochastic Ising model, cellular automata, infinite particle systems, and the voter model) in several ways, the two most important being (i) the model is analytically solvable even when the dynamical equation for each node may be different and the network may have an arbitrary finite graph and influence structure and (ii) when local dynamics is described by the same evolution equation, the model is decomposable, with the equilibrium behavior of the system expressed as an explicit function of network topology and node dynamics.</description><subject>Linear Models</subject><subject>Markov Chains</subject><subject>Models, Theoretical</subject><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kEtPwzAQhC0EoqXwBzig3DigFNsbP3KsqvKQKoEQnC3H2YqCm5RsUpR_T6u2nHYOO6OZj7FrwcdCcLh__ezpDTezsc3GXGjBsxM2FErxVILRpzsNeQpGqQG7IPriHCTY7JwNpLDaSJUN2d2k8rFvl8HH2CdUx40vIibrpg5IhJTUVVJh-1s333TJzhY-El4d7oh9PMzep0_p_OXxeTqZpwG4bFM0ufcmt1r7HIQshNcmlLa0wfCF52i8KFAFgIAWysJbiWAkyswiigAaRux2n7tt8dMhtW61pIAx-grrjpy1Smlut-tGTO4_Q1MTNbhw62a58k3vBHc7Ru7IyNnM7RltTTeH-K5YYflvOUKBP3mmZBs</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Smilkov, Daniel</creator><creator>Kocarev, Ljupco</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201107</creationdate><title>Analytically solvable processes on networks</title><author>Smilkov, Daniel ; Kocarev, Ljupco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-e79aa79866a9312b1a67cd8d8c70fa0e7a1be5c33ce83dba82e372e248ee1c363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Linear Models</topic><topic>Markov Chains</topic><topic>Models, Theoretical</topic><toplevel>online_resources</toplevel><creatorcontrib>Smilkov, Daniel</creatorcontrib><creatorcontrib>Kocarev, Ljupco</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smilkov, Daniel</au><au>Kocarev, Ljupco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytically solvable processes on networks</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2011-07</date><risdate>2011</risdate><volume>84</volume><issue>1 Pt 2</issue><spage>016104</spage><epage>016104</epage><pages>016104-016104</pages><artnum>016104</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>We introduce a broad class of analytically solvable processes on networks. In the special case, they reduce to random walk and consensus process, the two most basic processes on networks. Our class differs from previous models of interactions (such as the stochastic Ising model, cellular automata, infinite particle systems, and the voter model) in several ways, the two most important being (i) the model is analytically solvable even when the dynamical equation for each node may be different and the network may have an arbitrary finite graph and influence structure and (ii) when local dynamics is described by the same evolution equation, the model is decomposable, with the equilibrium behavior of the system expressed as an explicit function of network topology and node dynamics.</abstract><cop>United States</cop><pmid>21867254</pmid><doi>10.1103/PhysRevE.84.016104</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics, 2011-07, Vol.84 (1 Pt 2), p.016104-016104, Article 016104 |
issn | 1539-3755 1550-2376 |
language | eng |
recordid | cdi_proquest_miscellaneous_885560815 |
source | MEDLINE; American Physical Society Journals |
subjects | Linear Models Markov Chains Models, Theoretical |
title | Analytically solvable processes on networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A47%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytically%20solvable%20processes%20on%20networks&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Smilkov,%20Daniel&rft.date=2011-07&rft.volume=84&rft.issue=1%20Pt%202&rft.spage=016104&rft.epage=016104&rft.pages=016104-016104&rft.artnum=016104&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.84.016104&rft_dat=%3Cproquest_cross%3E885560815%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885560815&rft_id=info:pmid/21867254&rfr_iscdi=true |