Analytically solvable processes on networks

We introduce a broad class of analytically solvable processes on networks. In the special case, they reduce to random walk and consensus process, the two most basic processes on networks. Our class differs from previous models of interactions (such as the stochastic Ising model, cellular automata, i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2011-07, Vol.84 (1 Pt 2), p.016104-016104, Article 016104
Hauptverfasser: Smilkov, Daniel, Kocarev, Ljupco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 016104
container_issue 1 Pt 2
container_start_page 016104
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 84
creator Smilkov, Daniel
Kocarev, Ljupco
description We introduce a broad class of analytically solvable processes on networks. In the special case, they reduce to random walk and consensus process, the two most basic processes on networks. Our class differs from previous models of interactions (such as the stochastic Ising model, cellular automata, infinite particle systems, and the voter model) in several ways, the two most important being (i) the model is analytically solvable even when the dynamical equation for each node may be different and the network may have an arbitrary finite graph and influence structure and (ii) when local dynamics is described by the same evolution equation, the model is decomposable, with the equilibrium behavior of the system expressed as an explicit function of network topology and node dynamics.
doi_str_mv 10.1103/PhysRevE.84.016104
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_885560815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>885560815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-e79aa79866a9312b1a67cd8d8c70fa0e7a1be5c33ce83dba82e372e248ee1c363</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EoqXwBzig3DigFNsbP3KsqvKQKoEQnC3H2YqCm5RsUpR_T6u2nHYOO6OZj7FrwcdCcLh__ezpDTezsc3GXGjBsxM2FErxVILRpzsNeQpGqQG7IPriHCTY7JwNpLDaSJUN2d2k8rFvl8HH2CdUx40vIibrpg5IhJTUVVJh-1s333TJzhY-El4d7oh9PMzep0_p_OXxeTqZpwG4bFM0ufcmt1r7HIQshNcmlLa0wfCF52i8KFAFgIAWysJbiWAkyswiigAaRux2n7tt8dMhtW61pIAx-grrjpy1Smlut-tGTO4_Q1MTNbhw62a58k3vBHc7Ru7IyNnM7RltTTeH-K5YYflvOUKBP3mmZBs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885560815</pqid></control><display><type>article</type><title>Analytically solvable processes on networks</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Smilkov, Daniel ; Kocarev, Ljupco</creator><creatorcontrib>Smilkov, Daniel ; Kocarev, Ljupco</creatorcontrib><description>We introduce a broad class of analytically solvable processes on networks. In the special case, they reduce to random walk and consensus process, the two most basic processes on networks. Our class differs from previous models of interactions (such as the stochastic Ising model, cellular automata, infinite particle systems, and the voter model) in several ways, the two most important being (i) the model is analytically solvable even when the dynamical equation for each node may be different and the network may have an arbitrary finite graph and influence structure and (ii) when local dynamics is described by the same evolution equation, the model is decomposable, with the equilibrium behavior of the system expressed as an explicit function of network topology and node dynamics.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.84.016104</identifier><identifier>PMID: 21867254</identifier><language>eng</language><publisher>United States</publisher><subject>Linear Models ; Markov Chains ; Models, Theoretical</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2011-07, Vol.84 (1 Pt 2), p.016104-016104, Article 016104</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-e79aa79866a9312b1a67cd8d8c70fa0e7a1be5c33ce83dba82e372e248ee1c363</citedby><cites>FETCH-LOGICAL-c302t-e79aa79866a9312b1a67cd8d8c70fa0e7a1be5c33ce83dba82e372e248ee1c363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21867254$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smilkov, Daniel</creatorcontrib><creatorcontrib>Kocarev, Ljupco</creatorcontrib><title>Analytically solvable processes on networks</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We introduce a broad class of analytically solvable processes on networks. In the special case, they reduce to random walk and consensus process, the two most basic processes on networks. Our class differs from previous models of interactions (such as the stochastic Ising model, cellular automata, infinite particle systems, and the voter model) in several ways, the two most important being (i) the model is analytically solvable even when the dynamical equation for each node may be different and the network may have an arbitrary finite graph and influence structure and (ii) when local dynamics is described by the same evolution equation, the model is decomposable, with the equilibrium behavior of the system expressed as an explicit function of network topology and node dynamics.</description><subject>Linear Models</subject><subject>Markov Chains</subject><subject>Models, Theoretical</subject><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kEtPwzAQhC0EoqXwBzig3DigFNsbP3KsqvKQKoEQnC3H2YqCm5RsUpR_T6u2nHYOO6OZj7FrwcdCcLh__ezpDTezsc3GXGjBsxM2FErxVILRpzsNeQpGqQG7IPriHCTY7JwNpLDaSJUN2d2k8rFvl8HH2CdUx40vIibrpg5IhJTUVVJh-1s333TJzhY-El4d7oh9PMzep0_p_OXxeTqZpwG4bFM0ufcmt1r7HIQshNcmlLa0wfCF52i8KFAFgIAWysJbiWAkyswiigAaRux2n7tt8dMhtW61pIAx-grrjpy1Smlut-tGTO4_Q1MTNbhw62a58k3vBHc7Ru7IyNnM7RltTTeH-K5YYflvOUKBP3mmZBs</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Smilkov, Daniel</creator><creator>Kocarev, Ljupco</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201107</creationdate><title>Analytically solvable processes on networks</title><author>Smilkov, Daniel ; Kocarev, Ljupco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-e79aa79866a9312b1a67cd8d8c70fa0e7a1be5c33ce83dba82e372e248ee1c363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Linear Models</topic><topic>Markov Chains</topic><topic>Models, Theoretical</topic><toplevel>online_resources</toplevel><creatorcontrib>Smilkov, Daniel</creatorcontrib><creatorcontrib>Kocarev, Ljupco</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smilkov, Daniel</au><au>Kocarev, Ljupco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytically solvable processes on networks</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2011-07</date><risdate>2011</risdate><volume>84</volume><issue>1 Pt 2</issue><spage>016104</spage><epage>016104</epage><pages>016104-016104</pages><artnum>016104</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>We introduce a broad class of analytically solvable processes on networks. In the special case, they reduce to random walk and consensus process, the two most basic processes on networks. Our class differs from previous models of interactions (such as the stochastic Ising model, cellular automata, infinite particle systems, and the voter model) in several ways, the two most important being (i) the model is analytically solvable even when the dynamical equation for each node may be different and the network may have an arbitrary finite graph and influence structure and (ii) when local dynamics is described by the same evolution equation, the model is decomposable, with the equilibrium behavior of the system expressed as an explicit function of network topology and node dynamics.</abstract><cop>United States</cop><pmid>21867254</pmid><doi>10.1103/PhysRevE.84.016104</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2011-07, Vol.84 (1 Pt 2), p.016104-016104, Article 016104
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_885560815
source MEDLINE; American Physical Society Journals
subjects Linear Models
Markov Chains
Models, Theoretical
title Analytically solvable processes on networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A47%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytically%20solvable%20processes%20on%20networks&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Smilkov,%20Daniel&rft.date=2011-07&rft.volume=84&rft.issue=1%20Pt%202&rft.spage=016104&rft.epage=016104&rft.pages=016104-016104&rft.artnum=016104&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.84.016104&rft_dat=%3Cproquest_cross%3E885560815%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885560815&rft_id=info:pmid/21867254&rfr_iscdi=true