Brain glucose sensing and neural regulation of insulin and glucagon secretion

Glucose homeostasis requires the tight regulation of glucose utilization by liver, muscle and white or brown fat, and glucose production and release in the blood by liver. The major goal of maintaining glycemia at ∼5 mM is to ensure a sufficient flux of glucose to the brain, which depends mostly on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes, obesity & metabolism obesity & metabolism, 2011-10, Vol.13 (s1), p.82-88
1. Verfasser: Thorens, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 88
container_issue s1
container_start_page 82
container_title Diabetes, obesity & metabolism
container_volume 13
creator Thorens, B.
description Glucose homeostasis requires the tight regulation of glucose utilization by liver, muscle and white or brown fat, and glucose production and release in the blood by liver. The major goal of maintaining glycemia at ∼5 mM is to ensure a sufficient flux of glucose to the brain, which depends mostly on this nutrient as a source of metabolic energy. This homeostatic process is controlled by hormones, mainly glucagon and insulin, and by autonomic nervous activities that control the metabolic state of liver, muscle and fat tissue but also the secretory activity of the endocrine pancreas. Activation or inhibition of the sympathetic or parasympathetic branches of the autonomic nervous systems are controlled by glucose‐excited or glucose‐inhibited neurons located at different anatomical sites, mainly in the brainstem and the hypothalamus. Activation of these neurons by hyper‐ or hypoglycemia represents a critical aspect of the control of glucose homeostasis, and loss of glucose sensing by these cells as well as by pancreatic β‐cells is a hallmark of type 2 diabetes. In this article, aspects of the brain–endocrine pancreas axis are reviewed, highlighting the importance of central glucose sensing in the control of counterregulation to hypoglycemia but also mentioning the role of the neural control in β‐cell mass and function. Overall, the conclusions of these studies is that impaired glucose homeostasis, such as associated with type 2 diabetes, but also defective counterregulation to hypoglycemia, may be caused by initial defects in glucose sensing.
doi_str_mv 10.1111/j.1463-1326.2011.01453.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_884123494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1093428681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5333-a91ea7e8a1cb966e1a636c2ca587c402bef8850e4834e8219cf215e0b5e605c93</originalsourceid><addsrcrecordid>eNqNkUtPGzEURq2KquHRv1CNxAI2M_V7PIsuSoDQKAGpatWl5Zg70YSJB-yMSP49NkmzYIHwxtf2OffK-hDKCC5IXN8XBeGS5YRRWVBMSIEJF6xYf0KH-4eD15rmqsJ0gI5CWGCMOVPlFzSgRFFOJT5E0wtvGpfN2952AbIALjRunhl3nznovWkzD_O-Naumc1lXZ40LfRuFBCTJzON9AOshESfoc23aAF93-zH6e331Z3iTT-5Gv4Y_J7kVjLHcVARMCcoQO6ukBGIkk5ZaI1RpOaYzqJUSGLhiHBQlla0pEYBnAiQWtmLH6Gzb99F3Tz2ElV42wULbGgddH7RSnFDGKx7J83dJgivGqZKKRPT0Dbroeu_iPzTDouJYlGUarbaU9V0IHmr96Jul8ZvYSqdw9EKnDHTKQKdw9Gs4eh3Vb7sB_WwJ93vxfxoR-LEFnpsWNh9urC_vpqmKfr71m7CC9d43_kHLkpVC_7sd6fF4wm7H8fCbvQCeWKrl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059405779</pqid></control><display><type>article</type><title>Brain glucose sensing and neural regulation of insulin and glucagon secretion</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Thorens, B.</creator><creatorcontrib>Thorens, B.</creatorcontrib><description>Glucose homeostasis requires the tight regulation of glucose utilization by liver, muscle and white or brown fat, and glucose production and release in the blood by liver. The major goal of maintaining glycemia at ∼5 mM is to ensure a sufficient flux of glucose to the brain, which depends mostly on this nutrient as a source of metabolic energy. This homeostatic process is controlled by hormones, mainly glucagon and insulin, and by autonomic nervous activities that control the metabolic state of liver, muscle and fat tissue but also the secretory activity of the endocrine pancreas. Activation or inhibition of the sympathetic or parasympathetic branches of the autonomic nervous systems are controlled by glucose‐excited or glucose‐inhibited neurons located at different anatomical sites, mainly in the brainstem and the hypothalamus. Activation of these neurons by hyper‐ or hypoglycemia represents a critical aspect of the control of glucose homeostasis, and loss of glucose sensing by these cells as well as by pancreatic β‐cells is a hallmark of type 2 diabetes. In this article, aspects of the brain–endocrine pancreas axis are reviewed, highlighting the importance of central glucose sensing in the control of counterregulation to hypoglycemia but also mentioning the role of the neural control in β‐cell mass and function. Overall, the conclusions of these studies is that impaired glucose homeostasis, such as associated with type 2 diabetes, but also defective counterregulation to hypoglycemia, may be caused by initial defects in glucose sensing.</description><identifier>ISSN: 1462-8902</identifier><identifier>EISSN: 1463-1326</identifier><identifier>DOI: 10.1111/j.1463-1326.2011.01453.x</identifier><identifier>PMID: 21824260</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Autonomic nervous system ; Autonomic Nervous System - metabolism ; Autonomic Nervous System - physiology ; Beta cells ; Biological Transport ; Blood glucose ; Blood Glucose - metabolism ; Brain ; Brain - metabolism ; Brain stem ; brainstem ; Chemoreception ; counterregulation ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - metabolism ; Diabetes Mellitus, Type 2 - physiopathology ; Energy metabolism ; Glucagon ; Glucagon - metabolism ; Glucose ; Glucose metabolism ; glucose sensing ; Glucose Transporter Type 2 - metabolism ; Homeostasis ; Hormones ; Humans ; Hyperglycemia - metabolism ; Hypoglycemia ; Hypoglycemia - metabolism ; Hypothalamus ; Insulin ; Insulin - metabolism ; Insulin Secretion ; Islets of Langerhans - metabolism ; Liver ; Metabolism ; Muscles ; Neurons ; Nutrients ; Pancreas ; Parasympathetic nervous system ; Reviews ; Signal Transduction ; α-cells ; β-cells</subject><ispartof>Diabetes, obesity &amp; metabolism, 2011-10, Vol.13 (s1), p.82-88</ispartof><rights>2011 Blackwell Publishing Ltd</rights><rights>2011 Blackwell Publishing Ltd.</rights><rights>Copyright Wiley Subscription Services, Inc. Oct 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5333-a91ea7e8a1cb966e1a636c2ca587c402bef8850e4834e8219cf215e0b5e605c93</citedby><cites>FETCH-LOGICAL-c5333-a91ea7e8a1cb966e1a636c2ca587c402bef8850e4834e8219cf215e0b5e605c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1463-1326.2011.01453.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1463-1326.2011.01453.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21824260$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thorens, B.</creatorcontrib><title>Brain glucose sensing and neural regulation of insulin and glucagon secretion</title><title>Diabetes, obesity &amp; metabolism</title><addtitle>Diabetes Obes Metab</addtitle><description>Glucose homeostasis requires the tight regulation of glucose utilization by liver, muscle and white or brown fat, and glucose production and release in the blood by liver. The major goal of maintaining glycemia at ∼5 mM is to ensure a sufficient flux of glucose to the brain, which depends mostly on this nutrient as a source of metabolic energy. This homeostatic process is controlled by hormones, mainly glucagon and insulin, and by autonomic nervous activities that control the metabolic state of liver, muscle and fat tissue but also the secretory activity of the endocrine pancreas. Activation or inhibition of the sympathetic or parasympathetic branches of the autonomic nervous systems are controlled by glucose‐excited or glucose‐inhibited neurons located at different anatomical sites, mainly in the brainstem and the hypothalamus. Activation of these neurons by hyper‐ or hypoglycemia represents a critical aspect of the control of glucose homeostasis, and loss of glucose sensing by these cells as well as by pancreatic β‐cells is a hallmark of type 2 diabetes. In this article, aspects of the brain–endocrine pancreas axis are reviewed, highlighting the importance of central glucose sensing in the control of counterregulation to hypoglycemia but also mentioning the role of the neural control in β‐cell mass and function. Overall, the conclusions of these studies is that impaired glucose homeostasis, such as associated with type 2 diabetes, but also defective counterregulation to hypoglycemia, may be caused by initial defects in glucose sensing.</description><subject>Autonomic nervous system</subject><subject>Autonomic Nervous System - metabolism</subject><subject>Autonomic Nervous System - physiology</subject><subject>Beta cells</subject><subject>Biological Transport</subject><subject>Blood glucose</subject><subject>Blood Glucose - metabolism</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Brain stem</subject><subject>brainstem</subject><subject>Chemoreception</subject><subject>counterregulation</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Diabetes Mellitus, Type 2 - physiopathology</subject><subject>Energy metabolism</subject><subject>Glucagon</subject><subject>Glucagon - metabolism</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>glucose sensing</subject><subject>Glucose Transporter Type 2 - metabolism</subject><subject>Homeostasis</subject><subject>Hormones</subject><subject>Humans</subject><subject>Hyperglycemia - metabolism</subject><subject>Hypoglycemia</subject><subject>Hypoglycemia - metabolism</subject><subject>Hypothalamus</subject><subject>Insulin</subject><subject>Insulin - metabolism</subject><subject>Insulin Secretion</subject><subject>Islets of Langerhans - metabolism</subject><subject>Liver</subject><subject>Metabolism</subject><subject>Muscles</subject><subject>Neurons</subject><subject>Nutrients</subject><subject>Pancreas</subject><subject>Parasympathetic nervous system</subject><subject>Reviews</subject><subject>Signal Transduction</subject><subject>α-cells</subject><subject>β-cells</subject><issn>1462-8902</issn><issn>1463-1326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtPGzEURq2KquHRv1CNxAI2M_V7PIsuSoDQKAGpatWl5Zg70YSJB-yMSP49NkmzYIHwxtf2OffK-hDKCC5IXN8XBeGS5YRRWVBMSIEJF6xYf0KH-4eD15rmqsJ0gI5CWGCMOVPlFzSgRFFOJT5E0wtvGpfN2952AbIALjRunhl3nznovWkzD_O-Naumc1lXZ40LfRuFBCTJzON9AOshESfoc23aAF93-zH6e331Z3iTT-5Gv4Y_J7kVjLHcVARMCcoQO6ukBGIkk5ZaI1RpOaYzqJUSGLhiHBQlla0pEYBnAiQWtmLH6Gzb99F3Tz2ElV42wULbGgddH7RSnFDGKx7J83dJgivGqZKKRPT0Dbroeu_iPzTDouJYlGUarbaU9V0IHmr96Jul8ZvYSqdw9EKnDHTKQKdw9Gs4eh3Vb7sB_WwJ93vxfxoR-LEFnpsWNh9urC_vpqmKfr71m7CC9d43_kHLkpVC_7sd6fF4wm7H8fCbvQCeWKrl</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Thorens, B.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>7QR</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201110</creationdate><title>Brain glucose sensing and neural regulation of insulin and glucagon secretion</title><author>Thorens, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5333-a91ea7e8a1cb966e1a636c2ca587c402bef8850e4834e8219cf215e0b5e605c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Autonomic nervous system</topic><topic>Autonomic Nervous System - metabolism</topic><topic>Autonomic Nervous System - physiology</topic><topic>Beta cells</topic><topic>Biological Transport</topic><topic>Blood glucose</topic><topic>Blood Glucose - metabolism</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Brain stem</topic><topic>brainstem</topic><topic>Chemoreception</topic><topic>counterregulation</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Diabetes Mellitus, Type 2 - physiopathology</topic><topic>Energy metabolism</topic><topic>Glucagon</topic><topic>Glucagon - metabolism</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>glucose sensing</topic><topic>Glucose Transporter Type 2 - metabolism</topic><topic>Homeostasis</topic><topic>Hormones</topic><topic>Humans</topic><topic>Hyperglycemia - metabolism</topic><topic>Hypoglycemia</topic><topic>Hypoglycemia - metabolism</topic><topic>Hypothalamus</topic><topic>Insulin</topic><topic>Insulin - metabolism</topic><topic>Insulin Secretion</topic><topic>Islets of Langerhans - metabolism</topic><topic>Liver</topic><topic>Metabolism</topic><topic>Muscles</topic><topic>Neurons</topic><topic>Nutrients</topic><topic>Pancreas</topic><topic>Parasympathetic nervous system</topic><topic>Reviews</topic><topic>Signal Transduction</topic><topic>α-cells</topic><topic>β-cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thorens, B.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Chemoreception Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Diabetes, obesity &amp; metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thorens, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain glucose sensing and neural regulation of insulin and glucagon secretion</atitle><jtitle>Diabetes, obesity &amp; metabolism</jtitle><addtitle>Diabetes Obes Metab</addtitle><date>2011-10</date><risdate>2011</risdate><volume>13</volume><issue>s1</issue><spage>82</spage><epage>88</epage><pages>82-88</pages><issn>1462-8902</issn><eissn>1463-1326</eissn><abstract>Glucose homeostasis requires the tight regulation of glucose utilization by liver, muscle and white or brown fat, and glucose production and release in the blood by liver. The major goal of maintaining glycemia at ∼5 mM is to ensure a sufficient flux of glucose to the brain, which depends mostly on this nutrient as a source of metabolic energy. This homeostatic process is controlled by hormones, mainly glucagon and insulin, and by autonomic nervous activities that control the metabolic state of liver, muscle and fat tissue but also the secretory activity of the endocrine pancreas. Activation or inhibition of the sympathetic or parasympathetic branches of the autonomic nervous systems are controlled by glucose‐excited or glucose‐inhibited neurons located at different anatomical sites, mainly in the brainstem and the hypothalamus. Activation of these neurons by hyper‐ or hypoglycemia represents a critical aspect of the control of glucose homeostasis, and loss of glucose sensing by these cells as well as by pancreatic β‐cells is a hallmark of type 2 diabetes. In this article, aspects of the brain–endocrine pancreas axis are reviewed, highlighting the importance of central glucose sensing in the control of counterregulation to hypoglycemia but also mentioning the role of the neural control in β‐cell mass and function. Overall, the conclusions of these studies is that impaired glucose homeostasis, such as associated with type 2 diabetes, but also defective counterregulation to hypoglycemia, may be caused by initial defects in glucose sensing.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21824260</pmid><doi>10.1111/j.1463-1326.2011.01453.x</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1462-8902
ispartof Diabetes, obesity & metabolism, 2011-10, Vol.13 (s1), p.82-88
issn 1462-8902
1463-1326
language eng
recordid cdi_proquest_miscellaneous_884123494
source MEDLINE; Wiley Online Library All Journals
subjects Autonomic nervous system
Autonomic Nervous System - metabolism
Autonomic Nervous System - physiology
Beta cells
Biological Transport
Blood glucose
Blood Glucose - metabolism
Brain
Brain - metabolism
Brain stem
brainstem
Chemoreception
counterregulation
Diabetes
Diabetes mellitus
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - metabolism
Diabetes Mellitus, Type 2 - physiopathology
Energy metabolism
Glucagon
Glucagon - metabolism
Glucose
Glucose metabolism
glucose sensing
Glucose Transporter Type 2 - metabolism
Homeostasis
Hormones
Humans
Hyperglycemia - metabolism
Hypoglycemia
Hypoglycemia - metabolism
Hypothalamus
Insulin
Insulin - metabolism
Insulin Secretion
Islets of Langerhans - metabolism
Liver
Metabolism
Muscles
Neurons
Nutrients
Pancreas
Parasympathetic nervous system
Reviews
Signal Transduction
α-cells
β-cells
title Brain glucose sensing and neural regulation of insulin and glucagon secretion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A24%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20glucose%20sensing%20and%20neural%20regulation%20of%20insulin%20and%20glucagon%20secretion&rft.jtitle=Diabetes,%20obesity%20&%20metabolism&rft.au=Thorens,%20B.&rft.date=2011-10&rft.volume=13&rft.issue=s1&rft.spage=82&rft.epage=88&rft.pages=82-88&rft.issn=1462-8902&rft.eissn=1463-1326&rft_id=info:doi/10.1111/j.1463-1326.2011.01453.x&rft_dat=%3Cproquest_cross%3E1093428681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059405779&rft_id=info:pmid/21824260&rfr_iscdi=true