Differential expression pattern-based prioritization of candidate genes through integrating disease-specific expression data

Expression data can reveal subtle transcriptional changes that mediate the clinical phenotype of the disease resulting from interaction between genetic and environmental factors, which offers us a new perspective to prioritize candidate genes. Here, we proposed a novel differential expression patter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genomics (San Diego, Calif.) Calif.), 2011-07, Vol.98 (1), p.64-71
Hauptverfasser: Xiao, Yun, Xu, Chaohan, Ping, Yanyan, Guan, Jinxia, Fan, Huihui, Li, Yiqun, Li, Xia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 71
container_issue 1
container_start_page 64
container_title Genomics (San Diego, Calif.)
container_volume 98
creator Xiao, Yun
Xu, Chaohan
Ping, Yanyan
Guan, Jinxia
Fan, Huihui
Li, Yiqun
Li, Xia
description Expression data can reveal subtle transcriptional changes that mediate the clinical phenotype of the disease resulting from interaction between genetic and environmental factors, which offers us a new perspective to prioritize candidate genes. Here, we proposed a novel differential expression pattern (DEP)-based approach integrating numerous disease-specific expression data sets for prioritizing candidate genes. Using breast cancer as a case study, we validated the efficiency of our approach through integrating 12 breast cancer-related expression data sets based on the leave-one-out cross-validation. Particularly, prioritization based on subtype-specific expression data sets could generate significantly higher performance. The performance could be continually improved with the increasing expression data sets regardless of platform heterogeneity. We further validated the robustness of this approach by application to prostate cancer. Additionally, our approach showed higher performance in comparison with other expression-based approaches and better capability of identification of less well-studied disease genes in comparison with other integration-based approaches.
doi_str_mv 10.1016/j.ygeno.2011.04.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883046205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888754311000814</els_id><sourcerecordid>874898041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-92ed1914dfef0787241c62fb9a8fe6582dc562f8e9d99694c018d992dda39c53</originalsourceid><addsrcrecordid>eNqNkc2OFCEUhYnROO3oE5hobYyrKi8UVQULF5PxN5nEheOa0HCpoVMNLdDGMT68tN3-rIwrIHzncMNHyGMKHQU6vth0tzOG2DGgtAPeAdA7ZEVByFaMfLxLViCEaKeB92fkQc4bAJC9YPfJGaMDHfphWpHvr7xzmDAUr5cGv-4S5uxjaHa6FEyhXeuMttklH5Mv_psuh8voGqOD9VYXbOoQmJtyk-J-vml8KDinioW5sT5jjbd5h8Y7b_7ur1H9kNxzesn46LSek-s3r68v37VXH96-v7y4ag0XsrSSoaWScuvQwSQmxqkZmVtLLRyOg2DWDPUsUFopR8kNUFF3zFrdSzP05-T5sXaX4uc95qK2PhtcFh0w7rMSogc-MvgPcqoDCeC0kv2RNCnmnNCp-kVbnW4VBXXQozbqpx510KOAq6qnpp6c-vfrLdrfmV8-KvDsBOhs9OKSDsbnPxzv5VB9Vu7pkXM6Kj2nynz6WF8aqmPOgB2aXh4JrB_7xWNS2XgMBq1PaIqy0f9z1B9cm7ss</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>874898041</pqid></control><display><type>article</type><title>Differential expression pattern-based prioritization of candidate genes through integrating disease-specific expression data</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Xiao, Yun ; Xu, Chaohan ; Ping, Yanyan ; Guan, Jinxia ; Fan, Huihui ; Li, Yiqun ; Li, Xia</creator><creatorcontrib>Xiao, Yun ; Xu, Chaohan ; Ping, Yanyan ; Guan, Jinxia ; Fan, Huihui ; Li, Yiqun ; Li, Xia</creatorcontrib><description>Expression data can reveal subtle transcriptional changes that mediate the clinical phenotype of the disease resulting from interaction between genetic and environmental factors, which offers us a new perspective to prioritize candidate genes. Here, we proposed a novel differential expression pattern (DEP)-based approach integrating numerous disease-specific expression data sets for prioritizing candidate genes. Using breast cancer as a case study, we validated the efficiency of our approach through integrating 12 breast cancer-related expression data sets based on the leave-one-out cross-validation. Particularly, prioritization based on subtype-specific expression data sets could generate significantly higher performance. The performance could be continually improved with the increasing expression data sets regardless of platform heterogeneity. We further validated the robustness of this approach by application to prostate cancer. Additionally, our approach showed higher performance in comparison with other expression-based approaches and better capability of identification of less well-studied disease genes in comparison with other integration-based approaches.</description><identifier>ISSN: 0888-7543</identifier><identifier>EISSN: 1089-8646</identifier><identifier>DOI: 10.1016/j.ygeno.2011.04.001</identifier><identifier>PMID: 21515357</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Biological and medical sciences ; breast neoplasms ; Breast Neoplasms - genetics ; case studies ; Complex disease ; data collection ; Differential expression pattern ; Diverse techniques ; environmental factors ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling - methods ; gene expression regulation ; Gene Expression Regulation, Neoplastic ; genes ; Genes. Genome ; Genetics of eukaryotes. Biological and molecular evolution ; Humans ; Integration ; Male ; Molecular and cellular biology ; Molecular genetics ; phenotype ; Prioritization ; prostatic neoplasms ; Prostatic Neoplasms - genetics ; transcription (genetics)</subject><ispartof>Genomics (San Diego, Calif.), 2011-07, Vol.98 (1), p.64-71</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-92ed1914dfef0787241c62fb9a8fe6582dc562f8e9d99694c018d992dda39c53</citedby><cites>FETCH-LOGICAL-c489t-92ed1914dfef0787241c62fb9a8fe6582dc562f8e9d99694c018d992dda39c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0888754311000814$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24395543$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21515357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Yun</creatorcontrib><creatorcontrib>Xu, Chaohan</creatorcontrib><creatorcontrib>Ping, Yanyan</creatorcontrib><creatorcontrib>Guan, Jinxia</creatorcontrib><creatorcontrib>Fan, Huihui</creatorcontrib><creatorcontrib>Li, Yiqun</creatorcontrib><creatorcontrib>Li, Xia</creatorcontrib><title>Differential expression pattern-based prioritization of candidate genes through integrating disease-specific expression data</title><title>Genomics (San Diego, Calif.)</title><addtitle>Genomics</addtitle><description>Expression data can reveal subtle transcriptional changes that mediate the clinical phenotype of the disease resulting from interaction between genetic and environmental factors, which offers us a new perspective to prioritize candidate genes. Here, we proposed a novel differential expression pattern (DEP)-based approach integrating numerous disease-specific expression data sets for prioritizing candidate genes. Using breast cancer as a case study, we validated the efficiency of our approach through integrating 12 breast cancer-related expression data sets based on the leave-one-out cross-validation. Particularly, prioritization based on subtype-specific expression data sets could generate significantly higher performance. The performance could be continually improved with the increasing expression data sets regardless of platform heterogeneity. We further validated the robustness of this approach by application to prostate cancer. Additionally, our approach showed higher performance in comparison with other expression-based approaches and better capability of identification of less well-studied disease genes in comparison with other integration-based approaches.</description><subject>Biological and medical sciences</subject><subject>breast neoplasms</subject><subject>Breast Neoplasms - genetics</subject><subject>case studies</subject><subject>Complex disease</subject><subject>data collection</subject><subject>Differential expression pattern</subject><subject>Diverse techniques</subject><subject>environmental factors</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling - methods</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>genes</subject><subject>Genes. Genome</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Humans</subject><subject>Integration</subject><subject>Male</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>phenotype</subject><subject>Prioritization</subject><subject>prostatic neoplasms</subject><subject>Prostatic Neoplasms - genetics</subject><subject>transcription (genetics)</subject><issn>0888-7543</issn><issn>1089-8646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc2OFCEUhYnROO3oE5hobYyrKi8UVQULF5PxN5nEheOa0HCpoVMNLdDGMT68tN3-rIwrIHzncMNHyGMKHQU6vth0tzOG2DGgtAPeAdA7ZEVByFaMfLxLViCEaKeB92fkQc4bAJC9YPfJGaMDHfphWpHvr7xzmDAUr5cGv-4S5uxjaHa6FEyhXeuMttklH5Mv_psuh8voGqOD9VYXbOoQmJtyk-J-vml8KDinioW5sT5jjbd5h8Y7b_7ur1H9kNxzesn46LSek-s3r68v37VXH96-v7y4ag0XsrSSoaWScuvQwSQmxqkZmVtLLRyOg2DWDPUsUFopR8kNUFF3zFrdSzP05-T5sXaX4uc95qK2PhtcFh0w7rMSogc-MvgPcqoDCeC0kv2RNCnmnNCp-kVbnW4VBXXQozbqpx510KOAq6qnpp6c-vfrLdrfmV8-KvDsBOhs9OKSDsbnPxzv5VB9Vu7pkXM6Kj2nynz6WF8aqmPOgB2aXh4JrB_7xWNS2XgMBq1PaIqy0f9z1B9cm7ss</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Xiao, Yun</creator><creator>Xu, Chaohan</creator><creator>Ping, Yanyan</creator><creator>Guan, Jinxia</creator><creator>Fan, Huihui</creator><creator>Li, Yiqun</creator><creator>Li, Xia</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20110701</creationdate><title>Differential expression pattern-based prioritization of candidate genes through integrating disease-specific expression data</title><author>Xiao, Yun ; Xu, Chaohan ; Ping, Yanyan ; Guan, Jinxia ; Fan, Huihui ; Li, Yiqun ; Li, Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-92ed1914dfef0787241c62fb9a8fe6582dc562f8e9d99694c018d992dda39c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biological and medical sciences</topic><topic>breast neoplasms</topic><topic>Breast Neoplasms - genetics</topic><topic>case studies</topic><topic>Complex disease</topic><topic>data collection</topic><topic>Differential expression pattern</topic><topic>Diverse techniques</topic><topic>environmental factors</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling - methods</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>genes</topic><topic>Genes. Genome</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Humans</topic><topic>Integration</topic><topic>Male</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>phenotype</topic><topic>Prioritization</topic><topic>prostatic neoplasms</topic><topic>Prostatic Neoplasms - genetics</topic><topic>transcription (genetics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Yun</creatorcontrib><creatorcontrib>Xu, Chaohan</creatorcontrib><creatorcontrib>Ping, Yanyan</creatorcontrib><creatorcontrib>Guan, Jinxia</creatorcontrib><creatorcontrib>Fan, Huihui</creatorcontrib><creatorcontrib>Li, Yiqun</creatorcontrib><creatorcontrib>Li, Xia</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Genomics (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Yun</au><au>Xu, Chaohan</au><au>Ping, Yanyan</au><au>Guan, Jinxia</au><au>Fan, Huihui</au><au>Li, Yiqun</au><au>Li, Xia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential expression pattern-based prioritization of candidate genes through integrating disease-specific expression data</atitle><jtitle>Genomics (San Diego, Calif.)</jtitle><addtitle>Genomics</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>98</volume><issue>1</issue><spage>64</spage><epage>71</epage><pages>64-71</pages><issn>0888-7543</issn><eissn>1089-8646</eissn><abstract>Expression data can reveal subtle transcriptional changes that mediate the clinical phenotype of the disease resulting from interaction between genetic and environmental factors, which offers us a new perspective to prioritize candidate genes. Here, we proposed a novel differential expression pattern (DEP)-based approach integrating numerous disease-specific expression data sets for prioritizing candidate genes. Using breast cancer as a case study, we validated the efficiency of our approach through integrating 12 breast cancer-related expression data sets based on the leave-one-out cross-validation. Particularly, prioritization based on subtype-specific expression data sets could generate significantly higher performance. The performance could be continually improved with the increasing expression data sets regardless of platform heterogeneity. We further validated the robustness of this approach by application to prostate cancer. Additionally, our approach showed higher performance in comparison with other expression-based approaches and better capability of identification of less well-studied disease genes in comparison with other integration-based approaches.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>21515357</pmid><doi>10.1016/j.ygeno.2011.04.001</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-7543
ispartof Genomics (San Diego, Calif.), 2011-07, Vol.98 (1), p.64-71
issn 0888-7543
1089-8646
language eng
recordid cdi_proquest_miscellaneous_883046205
source MEDLINE; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Biological and medical sciences
breast neoplasms
Breast Neoplasms - genetics
case studies
Complex disease
data collection
Differential expression pattern
Diverse techniques
environmental factors
Fundamental and applied biological sciences. Psychology
Gene Expression Profiling - methods
gene expression regulation
Gene Expression Regulation, Neoplastic
genes
Genes. Genome
Genetics of eukaryotes. Biological and molecular evolution
Humans
Integration
Male
Molecular and cellular biology
Molecular genetics
phenotype
Prioritization
prostatic neoplasms
Prostatic Neoplasms - genetics
transcription (genetics)
title Differential expression pattern-based prioritization of candidate genes through integrating disease-specific expression data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A18%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20expression%20pattern-based%20prioritization%20of%20candidate%20genes%20through%20integrating%20disease-specific%20expression%20data&rft.jtitle=Genomics%20(San%20Diego,%20Calif.)&rft.au=Xiao,%20Yun&rft.date=2011-07-01&rft.volume=98&rft.issue=1&rft.spage=64&rft.epage=71&rft.pages=64-71&rft.issn=0888-7543&rft.eissn=1089-8646&rft_id=info:doi/10.1016/j.ygeno.2011.04.001&rft_dat=%3Cproquest_cross%3E874898041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=874898041&rft_id=info:pmid/21515357&rft_els_id=S0888754311000814&rfr_iscdi=true