Differential expression pattern-based prioritization of candidate genes through integrating disease-specific expression data
Expression data can reveal subtle transcriptional changes that mediate the clinical phenotype of the disease resulting from interaction between genetic and environmental factors, which offers us a new perspective to prioritize candidate genes. Here, we proposed a novel differential expression patter...
Gespeichert in:
Veröffentlicht in: | Genomics (San Diego, Calif.) Calif.), 2011-07, Vol.98 (1), p.64-71 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 71 |
---|---|
container_issue | 1 |
container_start_page | 64 |
container_title | Genomics (San Diego, Calif.) |
container_volume | 98 |
creator | Xiao, Yun Xu, Chaohan Ping, Yanyan Guan, Jinxia Fan, Huihui Li, Yiqun Li, Xia |
description | Expression data can reveal subtle transcriptional changes that mediate the clinical phenotype of the disease resulting from interaction between genetic and environmental factors, which offers us a new perspective to prioritize candidate genes. Here, we proposed a novel differential expression pattern (DEP)-based approach integrating numerous disease-specific expression data sets for prioritizing candidate genes. Using breast cancer as a case study, we validated the efficiency of our approach through integrating 12 breast cancer-related expression data sets based on the leave-one-out cross-validation. Particularly, prioritization based on subtype-specific expression data sets could generate significantly higher performance. The performance could be continually improved with the increasing expression data sets regardless of platform heterogeneity. We further validated the robustness of this approach by application to prostate cancer. Additionally, our approach showed higher performance in comparison with other expression-based approaches and better capability of identification of less well-studied disease genes in comparison with other integration-based approaches. |
doi_str_mv | 10.1016/j.ygeno.2011.04.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883046205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888754311000814</els_id><sourcerecordid>874898041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-92ed1914dfef0787241c62fb9a8fe6582dc562f8e9d99694c018d992dda39c53</originalsourceid><addsrcrecordid>eNqNkc2OFCEUhYnROO3oE5hobYyrKi8UVQULF5PxN5nEheOa0HCpoVMNLdDGMT68tN3-rIwrIHzncMNHyGMKHQU6vth0tzOG2DGgtAPeAdA7ZEVByFaMfLxLViCEaKeB92fkQc4bAJC9YPfJGaMDHfphWpHvr7xzmDAUr5cGv-4S5uxjaHa6FEyhXeuMttklH5Mv_psuh8voGqOD9VYXbOoQmJtyk-J-vml8KDinioW5sT5jjbd5h8Y7b_7ur1H9kNxzesn46LSek-s3r68v37VXH96-v7y4ag0XsrSSoaWScuvQwSQmxqkZmVtLLRyOg2DWDPUsUFopR8kNUFF3zFrdSzP05-T5sXaX4uc95qK2PhtcFh0w7rMSogc-MvgPcqoDCeC0kv2RNCnmnNCp-kVbnW4VBXXQozbqpx510KOAq6qnpp6c-vfrLdrfmV8-KvDsBOhs9OKSDsbnPxzv5VB9Vu7pkXM6Kj2nynz6WF8aqmPOgB2aXh4JrB_7xWNS2XgMBq1PaIqy0f9z1B9cm7ss</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>874898041</pqid></control><display><type>article</type><title>Differential expression pattern-based prioritization of candidate genes through integrating disease-specific expression data</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Xiao, Yun ; Xu, Chaohan ; Ping, Yanyan ; Guan, Jinxia ; Fan, Huihui ; Li, Yiqun ; Li, Xia</creator><creatorcontrib>Xiao, Yun ; Xu, Chaohan ; Ping, Yanyan ; Guan, Jinxia ; Fan, Huihui ; Li, Yiqun ; Li, Xia</creatorcontrib><description>Expression data can reveal subtle transcriptional changes that mediate the clinical phenotype of the disease resulting from interaction between genetic and environmental factors, which offers us a new perspective to prioritize candidate genes. Here, we proposed a novel differential expression pattern (DEP)-based approach integrating numerous disease-specific expression data sets for prioritizing candidate genes. Using breast cancer as a case study, we validated the efficiency of our approach through integrating 12 breast cancer-related expression data sets based on the leave-one-out cross-validation. Particularly, prioritization based on subtype-specific expression data sets could generate significantly higher performance. The performance could be continually improved with the increasing expression data sets regardless of platform heterogeneity. We further validated the robustness of this approach by application to prostate cancer. Additionally, our approach showed higher performance in comparison with other expression-based approaches and better capability of identification of less well-studied disease genes in comparison with other integration-based approaches.</description><identifier>ISSN: 0888-7543</identifier><identifier>EISSN: 1089-8646</identifier><identifier>DOI: 10.1016/j.ygeno.2011.04.001</identifier><identifier>PMID: 21515357</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Biological and medical sciences ; breast neoplasms ; Breast Neoplasms - genetics ; case studies ; Complex disease ; data collection ; Differential expression pattern ; Diverse techniques ; environmental factors ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling - methods ; gene expression regulation ; Gene Expression Regulation, Neoplastic ; genes ; Genes. Genome ; Genetics of eukaryotes. Biological and molecular evolution ; Humans ; Integration ; Male ; Molecular and cellular biology ; Molecular genetics ; phenotype ; Prioritization ; prostatic neoplasms ; Prostatic Neoplasms - genetics ; transcription (genetics)</subject><ispartof>Genomics (San Diego, Calif.), 2011-07, Vol.98 (1), p.64-71</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-92ed1914dfef0787241c62fb9a8fe6582dc562f8e9d99694c018d992dda39c53</citedby><cites>FETCH-LOGICAL-c489t-92ed1914dfef0787241c62fb9a8fe6582dc562f8e9d99694c018d992dda39c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0888754311000814$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24395543$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21515357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Yun</creatorcontrib><creatorcontrib>Xu, Chaohan</creatorcontrib><creatorcontrib>Ping, Yanyan</creatorcontrib><creatorcontrib>Guan, Jinxia</creatorcontrib><creatorcontrib>Fan, Huihui</creatorcontrib><creatorcontrib>Li, Yiqun</creatorcontrib><creatorcontrib>Li, Xia</creatorcontrib><title>Differential expression pattern-based prioritization of candidate genes through integrating disease-specific expression data</title><title>Genomics (San Diego, Calif.)</title><addtitle>Genomics</addtitle><description>Expression data can reveal subtle transcriptional changes that mediate the clinical phenotype of the disease resulting from interaction between genetic and environmental factors, which offers us a new perspective to prioritize candidate genes. Here, we proposed a novel differential expression pattern (DEP)-based approach integrating numerous disease-specific expression data sets for prioritizing candidate genes. Using breast cancer as a case study, we validated the efficiency of our approach through integrating 12 breast cancer-related expression data sets based on the leave-one-out cross-validation. Particularly, prioritization based on subtype-specific expression data sets could generate significantly higher performance. The performance could be continually improved with the increasing expression data sets regardless of platform heterogeneity. We further validated the robustness of this approach by application to prostate cancer. Additionally, our approach showed higher performance in comparison with other expression-based approaches and better capability of identification of less well-studied disease genes in comparison with other integration-based approaches.</description><subject>Biological and medical sciences</subject><subject>breast neoplasms</subject><subject>Breast Neoplasms - genetics</subject><subject>case studies</subject><subject>Complex disease</subject><subject>data collection</subject><subject>Differential expression pattern</subject><subject>Diverse techniques</subject><subject>environmental factors</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling - methods</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>genes</subject><subject>Genes. Genome</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Humans</subject><subject>Integration</subject><subject>Male</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>phenotype</subject><subject>Prioritization</subject><subject>prostatic neoplasms</subject><subject>Prostatic Neoplasms - genetics</subject><subject>transcription (genetics)</subject><issn>0888-7543</issn><issn>1089-8646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc2OFCEUhYnROO3oE5hobYyrKi8UVQULF5PxN5nEheOa0HCpoVMNLdDGMT68tN3-rIwrIHzncMNHyGMKHQU6vth0tzOG2DGgtAPeAdA7ZEVByFaMfLxLViCEaKeB92fkQc4bAJC9YPfJGaMDHfphWpHvr7xzmDAUr5cGv-4S5uxjaHa6FEyhXeuMttklH5Mv_psuh8voGqOD9VYXbOoQmJtyk-J-vml8KDinioW5sT5jjbd5h8Y7b_7ur1H9kNxzesn46LSek-s3r68v37VXH96-v7y4ag0XsrSSoaWScuvQwSQmxqkZmVtLLRyOg2DWDPUsUFopR8kNUFF3zFrdSzP05-T5sXaX4uc95qK2PhtcFh0w7rMSogc-MvgPcqoDCeC0kv2RNCnmnNCp-kVbnW4VBXXQozbqpx510KOAq6qnpp6c-vfrLdrfmV8-KvDsBOhs9OKSDsbnPxzv5VB9Vu7pkXM6Kj2nynz6WF8aqmPOgB2aXh4JrB_7xWNS2XgMBq1PaIqy0f9z1B9cm7ss</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Xiao, Yun</creator><creator>Xu, Chaohan</creator><creator>Ping, Yanyan</creator><creator>Guan, Jinxia</creator><creator>Fan, Huihui</creator><creator>Li, Yiqun</creator><creator>Li, Xia</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20110701</creationdate><title>Differential expression pattern-based prioritization of candidate genes through integrating disease-specific expression data</title><author>Xiao, Yun ; Xu, Chaohan ; Ping, Yanyan ; Guan, Jinxia ; Fan, Huihui ; Li, Yiqun ; Li, Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-92ed1914dfef0787241c62fb9a8fe6582dc562f8e9d99694c018d992dda39c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biological and medical sciences</topic><topic>breast neoplasms</topic><topic>Breast Neoplasms - genetics</topic><topic>case studies</topic><topic>Complex disease</topic><topic>data collection</topic><topic>Differential expression pattern</topic><topic>Diverse techniques</topic><topic>environmental factors</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling - methods</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>genes</topic><topic>Genes. Genome</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Humans</topic><topic>Integration</topic><topic>Male</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>phenotype</topic><topic>Prioritization</topic><topic>prostatic neoplasms</topic><topic>Prostatic Neoplasms - genetics</topic><topic>transcription (genetics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Yun</creatorcontrib><creatorcontrib>Xu, Chaohan</creatorcontrib><creatorcontrib>Ping, Yanyan</creatorcontrib><creatorcontrib>Guan, Jinxia</creatorcontrib><creatorcontrib>Fan, Huihui</creatorcontrib><creatorcontrib>Li, Yiqun</creatorcontrib><creatorcontrib>Li, Xia</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Genomics (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Yun</au><au>Xu, Chaohan</au><au>Ping, Yanyan</au><au>Guan, Jinxia</au><au>Fan, Huihui</au><au>Li, Yiqun</au><au>Li, Xia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential expression pattern-based prioritization of candidate genes through integrating disease-specific expression data</atitle><jtitle>Genomics (San Diego, Calif.)</jtitle><addtitle>Genomics</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>98</volume><issue>1</issue><spage>64</spage><epage>71</epage><pages>64-71</pages><issn>0888-7543</issn><eissn>1089-8646</eissn><abstract>Expression data can reveal subtle transcriptional changes that mediate the clinical phenotype of the disease resulting from interaction between genetic and environmental factors, which offers us a new perspective to prioritize candidate genes. Here, we proposed a novel differential expression pattern (DEP)-based approach integrating numerous disease-specific expression data sets for prioritizing candidate genes. Using breast cancer as a case study, we validated the efficiency of our approach through integrating 12 breast cancer-related expression data sets based on the leave-one-out cross-validation. Particularly, prioritization based on subtype-specific expression data sets could generate significantly higher performance. The performance could be continually improved with the increasing expression data sets regardless of platform heterogeneity. We further validated the robustness of this approach by application to prostate cancer. Additionally, our approach showed higher performance in comparison with other expression-based approaches and better capability of identification of less well-studied disease genes in comparison with other integration-based approaches.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>21515357</pmid><doi>10.1016/j.ygeno.2011.04.001</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-7543 |
ispartof | Genomics (San Diego, Calif.), 2011-07, Vol.98 (1), p.64-71 |
issn | 0888-7543 1089-8646 |
language | eng |
recordid | cdi_proquest_miscellaneous_883046205 |
source | MEDLINE; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Biological and medical sciences breast neoplasms Breast Neoplasms - genetics case studies Complex disease data collection Differential expression pattern Diverse techniques environmental factors Fundamental and applied biological sciences. Psychology Gene Expression Profiling - methods gene expression regulation Gene Expression Regulation, Neoplastic genes Genes. Genome Genetics of eukaryotes. Biological and molecular evolution Humans Integration Male Molecular and cellular biology Molecular genetics phenotype Prioritization prostatic neoplasms Prostatic Neoplasms - genetics transcription (genetics) |
title | Differential expression pattern-based prioritization of candidate genes through integrating disease-specific expression data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A18%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20expression%20pattern-based%20prioritization%20of%20candidate%20genes%20through%20integrating%20disease-specific%20expression%20data&rft.jtitle=Genomics%20(San%20Diego,%20Calif.)&rft.au=Xiao,%20Yun&rft.date=2011-07-01&rft.volume=98&rft.issue=1&rft.spage=64&rft.epage=71&rft.pages=64-71&rft.issn=0888-7543&rft.eissn=1089-8646&rft_id=info:doi/10.1016/j.ygeno.2011.04.001&rft_dat=%3Cproquest_cross%3E874898041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=874898041&rft_id=info:pmid/21515357&rft_els_id=S0888754311000814&rfr_iscdi=true |