Modelling acute renal failure using blood and breath biomarkers in rats
Abstract This paper compares three methods for estimating renal function, as tested in rats. Acute renal failure (ARF) was induced via a 60-min bilateral renal artery clamp in 8 Sprague–Dawley rats and renal function was monitored for 1 week post-surgery. A two-compartment model was developed for es...
Gespeichert in:
Veröffentlicht in: | Computer methods and programs in biomedicine 2011-02, Vol.101 (2), p.173-182 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 182 |
---|---|
container_issue | 2 |
container_start_page | 173 |
container_title | Computer methods and programs in biomedicine |
container_volume | 101 |
creator | Moorhead, Katherine T Hill, Jonathan V Chase, J. Geoffrey Hann, Christopher E Scotter, Jennifer M Storer, Malina K Endre, Zoltan H |
description | Abstract This paper compares three methods for estimating renal function, as tested in rats. Acute renal failure (ARF) was induced via a 60-min bilateral renal artery clamp in 8 Sprague–Dawley rats and renal function was monitored for 1 week post-surgery. A two-compartment model was developed for estimating glomerular filtration via a bolus injection of a radio-labelled inulin tracer, and was compared with an estimated creatinine clearance method, modified using the Cockcroft–Gault equation for rats. These two methods were compared with selected ion flow tube-mass spectrometry (SIFT-MS) monitoring of breath analytes. Determination of renal function via SIFT-MS is desirable since results are available non-invasively and in real time. Relative decreases in renal function show very good correlation between all 3 methods ( R2 = 0.84, 0.91 and 0.72 for breath-inulin, inulin-creatinine, and breath-creatinine correlations, respectively), and indicate good promise for fast, non-invasive determination of renal function via breath testing. |
doi_str_mv | 10.1016/j.cmpb.2010.07.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883042966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169260710001975</els_id><sourcerecordid>1671225327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-3b5d242c36ecf394ff6224da05ffb642d8279dd839a00b847450424efa0d455a3</originalsourceid><addsrcrecordid>eNqFkk9rFTEUxYMo9ln9Ai4kO93Ma3LzbwZEKEWrUOlCXYdMckfzOm_yTGaEfvtmeNWFi3Z1IfmdA_eeQ8hrzraccX222_r9od8Cqw_MbOt4Qja8NdAYpdVTsqlQ14Bm5oS8KGXHGAOl9HNyAsxAC0JtyOXXFHAc4_STOr_MSDNObqSDi-OSkS5l_enHlAJ1U6B9Rjf_on1Me5dvMBcaJ5rdXF6SZ4MbC766n6fkx6eP3y8-N1fXl18uzq8ar3g3N6JXASR4odEPopPDoAFkcEwNQ68lhBZMF0IrOsdY30ojFZMgcXAsSKWcOCVvj76HnH4vWGa7j8XXDdyEaSm2bUUVdFo_TiohDWe6reS7B0muDQdQAkxF4Yj6nErJONhDjvUUt5Yzu4Zid3YNxa6hWGZsHVX05t5_6fcY_kn-plCB90cA6-X-RMy2-IiTxxAz-tmGFB_2__Cf3NdAo3fjDd5i2aUl10zrHraAZfbbWou1FbwWgndGiTt2a7CJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671225327</pqid></control><display><type>article</type><title>Modelling acute renal failure using blood and breath biomarkers in rats</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Moorhead, Katherine T ; Hill, Jonathan V ; Chase, J. Geoffrey ; Hann, Christopher E ; Scotter, Jennifer M ; Storer, Malina K ; Endre, Zoltan H</creator><creatorcontrib>Moorhead, Katherine T ; Hill, Jonathan V ; Chase, J. Geoffrey ; Hann, Christopher E ; Scotter, Jennifer M ; Storer, Malina K ; Endre, Zoltan H</creatorcontrib><description>Abstract This paper compares three methods for estimating renal function, as tested in rats. Acute renal failure (ARF) was induced via a 60-min bilateral renal artery clamp in 8 Sprague–Dawley rats and renal function was monitored for 1 week post-surgery. A two-compartment model was developed for estimating glomerular filtration via a bolus injection of a radio-labelled inulin tracer, and was compared with an estimated creatinine clearance method, modified using the Cockcroft–Gault equation for rats. These two methods were compared with selected ion flow tube-mass spectrometry (SIFT-MS) monitoring of breath analytes. Determination of renal function via SIFT-MS is desirable since results are available non-invasively and in real time. Relative decreases in renal function show very good correlation between all 3 methods ( R2 = 0.84, 0.91 and 0.72 for breath-inulin, inulin-creatinine, and breath-creatinine correlations, respectively), and indicate good promise for fast, non-invasive determination of renal function via breath testing.</description><identifier>ISSN: 0169-2607</identifier><identifier>EISSN: 1872-7565</identifier><identifier>DOI: 10.1016/j.cmpb.2010.07.010</identifier><identifier>PMID: 20728235</identifier><language>eng</language><publisher>Ireland: Elsevier Ireland Ltd</publisher><subject>Acute Kidney Injury - physiopathology ; Animals ; Arteries ; Biomarkers - analysis ; Breath biomarkers ; Computer programs ; Correlation ; Differential equations ; Estimating ; Failure ; Glomerular Filtration Rate ; Integral fitting method ; Internal Medicine ; Mass Spectrometry ; Mathematical models ; Model-based approximation ; Models, Theoretical ; Other ; Rats ; Renal function ; Tracer kinetics</subject><ispartof>Computer methods and programs in biomedicine, 2011-02, Vol.101 (2), p.173-182</ispartof><rights>Elsevier Ireland Ltd</rights><rights>2010 Elsevier Ireland Ltd</rights><rights>Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-3b5d242c36ecf394ff6224da05ffb642d8279dd839a00b847450424efa0d455a3</citedby><cites>FETCH-LOGICAL-c519t-3b5d242c36ecf394ff6224da05ffb642d8279dd839a00b847450424efa0d455a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0169260710001975$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20728235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moorhead, Katherine T</creatorcontrib><creatorcontrib>Hill, Jonathan V</creatorcontrib><creatorcontrib>Chase, J. Geoffrey</creatorcontrib><creatorcontrib>Hann, Christopher E</creatorcontrib><creatorcontrib>Scotter, Jennifer M</creatorcontrib><creatorcontrib>Storer, Malina K</creatorcontrib><creatorcontrib>Endre, Zoltan H</creatorcontrib><title>Modelling acute renal failure using blood and breath biomarkers in rats</title><title>Computer methods and programs in biomedicine</title><addtitle>Comput Methods Programs Biomed</addtitle><description>Abstract This paper compares three methods for estimating renal function, as tested in rats. Acute renal failure (ARF) was induced via a 60-min bilateral renal artery clamp in 8 Sprague–Dawley rats and renal function was monitored for 1 week post-surgery. A two-compartment model was developed for estimating glomerular filtration via a bolus injection of a radio-labelled inulin tracer, and was compared with an estimated creatinine clearance method, modified using the Cockcroft–Gault equation for rats. These two methods were compared with selected ion flow tube-mass spectrometry (SIFT-MS) monitoring of breath analytes. Determination of renal function via SIFT-MS is desirable since results are available non-invasively and in real time. Relative decreases in renal function show very good correlation between all 3 methods ( R2 = 0.84, 0.91 and 0.72 for breath-inulin, inulin-creatinine, and breath-creatinine correlations, respectively), and indicate good promise for fast, non-invasive determination of renal function via breath testing.</description><subject>Acute Kidney Injury - physiopathology</subject><subject>Animals</subject><subject>Arteries</subject><subject>Biomarkers - analysis</subject><subject>Breath biomarkers</subject><subject>Computer programs</subject><subject>Correlation</subject><subject>Differential equations</subject><subject>Estimating</subject><subject>Failure</subject><subject>Glomerular Filtration Rate</subject><subject>Integral fitting method</subject><subject>Internal Medicine</subject><subject>Mass Spectrometry</subject><subject>Mathematical models</subject><subject>Model-based approximation</subject><subject>Models, Theoretical</subject><subject>Other</subject><subject>Rats</subject><subject>Renal function</subject><subject>Tracer kinetics</subject><issn>0169-2607</issn><issn>1872-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk9rFTEUxYMo9ln9Ai4kO93Ma3LzbwZEKEWrUOlCXYdMckfzOm_yTGaEfvtmeNWFi3Z1IfmdA_eeQ8hrzraccX222_r9od8Cqw_MbOt4Qja8NdAYpdVTsqlQ14Bm5oS8KGXHGAOl9HNyAsxAC0JtyOXXFHAc4_STOr_MSDNObqSDi-OSkS5l_enHlAJ1U6B9Rjf_on1Me5dvMBcaJ5rdXF6SZ4MbC766n6fkx6eP3y8-N1fXl18uzq8ar3g3N6JXASR4odEPopPDoAFkcEwNQ68lhBZMF0IrOsdY30ojFZMgcXAsSKWcOCVvj76HnH4vWGa7j8XXDdyEaSm2bUUVdFo_TiohDWe6reS7B0muDQdQAkxF4Yj6nErJONhDjvUUt5Yzu4Zid3YNxa6hWGZsHVX05t5_6fcY_kn-plCB90cA6-X-RMy2-IiTxxAz-tmGFB_2__Cf3NdAo3fjDd5i2aUl10zrHraAZfbbWou1FbwWgndGiTt2a7CJ</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Moorhead, Katherine T</creator><creator>Hill, Jonathan V</creator><creator>Chase, J. Geoffrey</creator><creator>Hann, Christopher E</creator><creator>Scotter, Jennifer M</creator><creator>Storer, Malina K</creator><creator>Endre, Zoltan H</creator><general>Elsevier Ireland Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20110201</creationdate><title>Modelling acute renal failure using blood and breath biomarkers in rats</title><author>Moorhead, Katherine T ; Hill, Jonathan V ; Chase, J. Geoffrey ; Hann, Christopher E ; Scotter, Jennifer M ; Storer, Malina K ; Endre, Zoltan H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-3b5d242c36ecf394ff6224da05ffb642d8279dd839a00b847450424efa0d455a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acute Kidney Injury - physiopathology</topic><topic>Animals</topic><topic>Arteries</topic><topic>Biomarkers - analysis</topic><topic>Breath biomarkers</topic><topic>Computer programs</topic><topic>Correlation</topic><topic>Differential equations</topic><topic>Estimating</topic><topic>Failure</topic><topic>Glomerular Filtration Rate</topic><topic>Integral fitting method</topic><topic>Internal Medicine</topic><topic>Mass Spectrometry</topic><topic>Mathematical models</topic><topic>Model-based approximation</topic><topic>Models, Theoretical</topic><topic>Other</topic><topic>Rats</topic><topic>Renal function</topic><topic>Tracer kinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moorhead, Katherine T</creatorcontrib><creatorcontrib>Hill, Jonathan V</creatorcontrib><creatorcontrib>Chase, J. Geoffrey</creatorcontrib><creatorcontrib>Hann, Christopher E</creatorcontrib><creatorcontrib>Scotter, Jennifer M</creatorcontrib><creatorcontrib>Storer, Malina K</creatorcontrib><creatorcontrib>Endre, Zoltan H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Computer methods and programs in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moorhead, Katherine T</au><au>Hill, Jonathan V</au><au>Chase, J. Geoffrey</au><au>Hann, Christopher E</au><au>Scotter, Jennifer M</au><au>Storer, Malina K</au><au>Endre, Zoltan H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling acute renal failure using blood and breath biomarkers in rats</atitle><jtitle>Computer methods and programs in biomedicine</jtitle><addtitle>Comput Methods Programs Biomed</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>101</volume><issue>2</issue><spage>173</spage><epage>182</epage><pages>173-182</pages><issn>0169-2607</issn><eissn>1872-7565</eissn><abstract>Abstract This paper compares three methods for estimating renal function, as tested in rats. Acute renal failure (ARF) was induced via a 60-min bilateral renal artery clamp in 8 Sprague–Dawley rats and renal function was monitored for 1 week post-surgery. A two-compartment model was developed for estimating glomerular filtration via a bolus injection of a radio-labelled inulin tracer, and was compared with an estimated creatinine clearance method, modified using the Cockcroft–Gault equation for rats. These two methods were compared with selected ion flow tube-mass spectrometry (SIFT-MS) monitoring of breath analytes. Determination of renal function via SIFT-MS is desirable since results are available non-invasively and in real time. Relative decreases in renal function show very good correlation between all 3 methods ( R2 = 0.84, 0.91 and 0.72 for breath-inulin, inulin-creatinine, and breath-creatinine correlations, respectively), and indicate good promise for fast, non-invasive determination of renal function via breath testing.</abstract><cop>Ireland</cop><pub>Elsevier Ireland Ltd</pub><pmid>20728235</pmid><doi>10.1016/j.cmpb.2010.07.010</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-2607 |
ispartof | Computer methods and programs in biomedicine, 2011-02, Vol.101 (2), p.173-182 |
issn | 0169-2607 1872-7565 |
language | eng |
recordid | cdi_proquest_miscellaneous_883042966 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Acute Kidney Injury - physiopathology Animals Arteries Biomarkers - analysis Breath biomarkers Computer programs Correlation Differential equations Estimating Failure Glomerular Filtration Rate Integral fitting method Internal Medicine Mass Spectrometry Mathematical models Model-based approximation Models, Theoretical Other Rats Renal function Tracer kinetics |
title | Modelling acute renal failure using blood and breath biomarkers in rats |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A09%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20acute%20renal%20failure%20using%20blood%20and%20breath%20biomarkers%20in%20rats&rft.jtitle=Computer%20methods%20and%20programs%20in%20biomedicine&rft.au=Moorhead,%20Katherine%20T&rft.date=2011-02-01&rft.volume=101&rft.issue=2&rft.spage=173&rft.epage=182&rft.pages=173-182&rft.issn=0169-2607&rft.eissn=1872-7565&rft_id=info:doi/10.1016/j.cmpb.2010.07.010&rft_dat=%3Cproquest_cross%3E1671225327%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671225327&rft_id=info:pmid/20728235&rft_els_id=S0169260710001975&rfr_iscdi=true |