Reference-based linear curve fitting for bolus arrival time estimation in 4D MRA and MR perfusion-weighted image sequences
The bolus arrival time (BAT) based on an indicator dilution curve is an important hemodynamic parameter. As the direct estimation of this parameter is generally problematic, various parametric models have been proposed that describe typical physiological shapes of indicator dilution curves, but it r...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2011-01, Vol.65 (1), p.289-294 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 294 |
---|---|
container_issue | 1 |
container_start_page | 289 |
container_title | Magnetic resonance in medicine |
container_volume | 65 |
creator | Forkert, Nils Daniel Fiehler, Jens Ries, Thorsten Illies, Till Möller, Dietmar Handels, Heinz Säring, Dennis |
description | The bolus arrival time (BAT) based on an indicator dilution curve is an important hemodynamic parameter. As the direct estimation of this parameter is generally problematic, various parametric models have been proposed that describe typical physiological shapes of indicator dilution curves, but it remains unclear which model describes the real physiological background. This article presents a method that indirectly incorporates physiological information derived from the data available. For this, a patient‐specific hemodynamic reference curve is extracted, and the corresponding reference BAT is determined. To estimate a BAT for a given signal curve, the reference curve is fitted linearly to the signal curve. The parameters of the fitting process are then used to transfer the reference BAT to the signal curve. The validation of the method proposed based on Monte Carlo simulations showed that the approach presented is capable of improving the BAT estimation precision compared with standard BAT estimation methods by up to 59% while at the same time reduces the computation time. A major benefit of the method proposed is that no assumption about the underlying distribution of indicator dilution has to be made, as it is implicitly modeled in the reference curve. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/mrm.22583 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883039224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>820788033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4573-b3bef0e462626ce3dac0345276526a7ce9d3c703e1f56d920d9d3fe244606a043</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EotvCgT-ALHGoekg78UecHEsLhWqXjwUEN8txxotLPhY7aSm_vl627QEJCfnwSp5n3tHMS8izHA5zAHbUhe6QMVnyB2SWS8YyJivxkMxACch4XokdshvjBQBUlRKPyQ7bVAopZuT3Eh0G7C1mtYnY0Nb3aAK1U7hE6vw4-n5F3RBoPbRTpCYEf2laOvoOKcYkZvRDT31PxSldLI-p6ZukdI3BTTGVsiv0q-9jsk7sCmnEn9NmXnxCHjnTRnx6q3vky-tXn0_eZPP3Z29PjueZFVLxrOY1OkBRsPQs8sZY4EIyVUhWGGWxarhVwDF3smgqBk36cMiEKKAwIPge2d_6rsOQRsdRdz5abFvT4zBFXZYceMXYf5DpbmUJnCfyxV_kxTCFPq2h842fylmuEnWwpWwYYgzo9DqkI4RrnYPeJKdTcvpPcol9fus41R029-RdVAk42gJXvsXrfzvpxXJxZ5ltO3wc8dd9hwk_dKG4kvrruzP97eUS5h8_nOtP_AYWf7EP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1883071217</pqid></control><display><type>article</type><title>Reference-based linear curve fitting for bolus arrival time estimation in 4D MRA and MR perfusion-weighted image sequences</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Forkert, Nils Daniel ; Fiehler, Jens ; Ries, Thorsten ; Illies, Till ; Möller, Dietmar ; Handels, Heinz ; Säring, Dennis</creator><creatorcontrib>Forkert, Nils Daniel ; Fiehler, Jens ; Ries, Thorsten ; Illies, Till ; Möller, Dietmar ; Handels, Heinz ; Säring, Dennis</creatorcontrib><description>The bolus arrival time (BAT) based on an indicator dilution curve is an important hemodynamic parameter. As the direct estimation of this parameter is generally problematic, various parametric models have been proposed that describe typical physiological shapes of indicator dilution curves, but it remains unclear which model describes the real physiological background. This article presents a method that indirectly incorporates physiological information derived from the data available. For this, a patient‐specific hemodynamic reference curve is extracted, and the corresponding reference BAT is determined. To estimate a BAT for a given signal curve, the reference curve is fitted linearly to the signal curve. The parameters of the fitting process are then used to transfer the reference BAT to the signal curve. The validation of the method proposed based on Monte Carlo simulations showed that the approach presented is capable of improving the BAT estimation precision compared with standard BAT estimation methods by up to 59% while at the same time reduces the computation time. A major benefit of the method proposed is that no assumption about the underlying distribution of indicator dilution has to be made, as it is implicitly modeled in the reference curve. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>ISSN: 1522-2594</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.22583</identifier><identifier>PMID: 20740654</identifier><identifier>CODEN: MRMEEN</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Arteries - physiology ; Blood Flow Velocity - physiology ; Computer Simulation ; Contrast Media - pharmacokinetics ; curve fitting ; Germany ; hemodynamics ; Humans ; Image Interpretation, Computer-Assisted - methods ; Image Interpretation, Computer-Assisted - standards ; Imaging, Three-Dimensional - methods ; Imaging, Three-Dimensional - standards ; indicator dilution techniques ; Linear Models ; magnetic resonance angiography ; Magnetic Resonance Angiography - methods ; Magnetic Resonance Angiography - standards ; Models, Cardiovascular ; Reference Values ; Reproducibility of Results ; Sensitivity and Specificity</subject><ispartof>Magnetic resonance in medicine, 2011-01, Vol.65 (1), p.289-294</ispartof><rights>Copyright © 2010 Wiley‐Liss, Inc.</rights><rights>2010 Wiley-Liss, Inc.</rights><rights>Copyright © 2010 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4573-b3bef0e462626ce3dac0345276526a7ce9d3c703e1f56d920d9d3fe244606a043</citedby><cites>FETCH-LOGICAL-c4573-b3bef0e462626ce3dac0345276526a7ce9d3c703e1f56d920d9d3fe244606a043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.22583$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.22583$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20740654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Forkert, Nils Daniel</creatorcontrib><creatorcontrib>Fiehler, Jens</creatorcontrib><creatorcontrib>Ries, Thorsten</creatorcontrib><creatorcontrib>Illies, Till</creatorcontrib><creatorcontrib>Möller, Dietmar</creatorcontrib><creatorcontrib>Handels, Heinz</creatorcontrib><creatorcontrib>Säring, Dennis</creatorcontrib><title>Reference-based linear curve fitting for bolus arrival time estimation in 4D MRA and MR perfusion-weighted image sequences</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>The bolus arrival time (BAT) based on an indicator dilution curve is an important hemodynamic parameter. As the direct estimation of this parameter is generally problematic, various parametric models have been proposed that describe typical physiological shapes of indicator dilution curves, but it remains unclear which model describes the real physiological background. This article presents a method that indirectly incorporates physiological information derived from the data available. For this, a patient‐specific hemodynamic reference curve is extracted, and the corresponding reference BAT is determined. To estimate a BAT for a given signal curve, the reference curve is fitted linearly to the signal curve. The parameters of the fitting process are then used to transfer the reference BAT to the signal curve. The validation of the method proposed based on Monte Carlo simulations showed that the approach presented is capable of improving the BAT estimation precision compared with standard BAT estimation methods by up to 59% while at the same time reduces the computation time. A major benefit of the method proposed is that no assumption about the underlying distribution of indicator dilution has to be made, as it is implicitly modeled in the reference curve. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>Arteries - physiology</subject><subject>Blood Flow Velocity - physiology</subject><subject>Computer Simulation</subject><subject>Contrast Media - pharmacokinetics</subject><subject>curve fitting</subject><subject>Germany</subject><subject>hemodynamics</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image Interpretation, Computer-Assisted - standards</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Imaging, Three-Dimensional - standards</subject><subject>indicator dilution techniques</subject><subject>Linear Models</subject><subject>magnetic resonance angiography</subject><subject>Magnetic Resonance Angiography - methods</subject><subject>Magnetic Resonance Angiography - standards</subject><subject>Models, Cardiovascular</subject><subject>Reference Values</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><issn>0740-3194</issn><issn>1522-2594</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhi0EotvCgT-ALHGoekg78UecHEsLhWqXjwUEN8txxotLPhY7aSm_vl627QEJCfnwSp5n3tHMS8izHA5zAHbUhe6QMVnyB2SWS8YyJivxkMxACch4XokdshvjBQBUlRKPyQ7bVAopZuT3Eh0G7C1mtYnY0Nb3aAK1U7hE6vw4-n5F3RBoPbRTpCYEf2laOvoOKcYkZvRDT31PxSldLI-p6ZukdI3BTTGVsiv0q-9jsk7sCmnEn9NmXnxCHjnTRnx6q3vky-tXn0_eZPP3Z29PjueZFVLxrOY1OkBRsPQs8sZY4EIyVUhWGGWxarhVwDF3smgqBk36cMiEKKAwIPge2d_6rsOQRsdRdz5abFvT4zBFXZYceMXYf5DpbmUJnCfyxV_kxTCFPq2h842fylmuEnWwpWwYYgzo9DqkI4RrnYPeJKdTcvpPcol9fus41R029-RdVAk42gJXvsXrfzvpxXJxZ5ltO3wc8dd9hwk_dKG4kvrruzP97eUS5h8_nOtP_AYWf7EP</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Forkert, Nils Daniel</creator><creator>Fiehler, Jens</creator><creator>Ries, Thorsten</creator><creator>Illies, Till</creator><creator>Möller, Dietmar</creator><creator>Handels, Heinz</creator><creator>Säring, Dennis</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>201101</creationdate><title>Reference-based linear curve fitting for bolus arrival time estimation in 4D MRA and MR perfusion-weighted image sequences</title><author>Forkert, Nils Daniel ; Fiehler, Jens ; Ries, Thorsten ; Illies, Till ; Möller, Dietmar ; Handels, Heinz ; Säring, Dennis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4573-b3bef0e462626ce3dac0345276526a7ce9d3c703e1f56d920d9d3fe244606a043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Arteries - physiology</topic><topic>Blood Flow Velocity - physiology</topic><topic>Computer Simulation</topic><topic>Contrast Media - pharmacokinetics</topic><topic>curve fitting</topic><topic>Germany</topic><topic>hemodynamics</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image Interpretation, Computer-Assisted - standards</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Imaging, Three-Dimensional - standards</topic><topic>indicator dilution techniques</topic><topic>Linear Models</topic><topic>magnetic resonance angiography</topic><topic>Magnetic Resonance Angiography - methods</topic><topic>Magnetic Resonance Angiography - standards</topic><topic>Models, Cardiovascular</topic><topic>Reference Values</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forkert, Nils Daniel</creatorcontrib><creatorcontrib>Fiehler, Jens</creatorcontrib><creatorcontrib>Ries, Thorsten</creatorcontrib><creatorcontrib>Illies, Till</creatorcontrib><creatorcontrib>Möller, Dietmar</creatorcontrib><creatorcontrib>Handels, Heinz</creatorcontrib><creatorcontrib>Säring, Dennis</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forkert, Nils Daniel</au><au>Fiehler, Jens</au><au>Ries, Thorsten</au><au>Illies, Till</au><au>Möller, Dietmar</au><au>Handels, Heinz</au><au>Säring, Dennis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reference-based linear curve fitting for bolus arrival time estimation in 4D MRA and MR perfusion-weighted image sequences</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2011-01</date><risdate>2011</risdate><volume>65</volume><issue>1</issue><spage>289</spage><epage>294</epage><pages>289-294</pages><issn>0740-3194</issn><issn>1522-2594</issn><eissn>1522-2594</eissn><coden>MRMEEN</coden><abstract>The bolus arrival time (BAT) based on an indicator dilution curve is an important hemodynamic parameter. As the direct estimation of this parameter is generally problematic, various parametric models have been proposed that describe typical physiological shapes of indicator dilution curves, but it remains unclear which model describes the real physiological background. This article presents a method that indirectly incorporates physiological information derived from the data available. For this, a patient‐specific hemodynamic reference curve is extracted, and the corresponding reference BAT is determined. To estimate a BAT for a given signal curve, the reference curve is fitted linearly to the signal curve. The parameters of the fitting process are then used to transfer the reference BAT to the signal curve. The validation of the method proposed based on Monte Carlo simulations showed that the approach presented is capable of improving the BAT estimation precision compared with standard BAT estimation methods by up to 59% while at the same time reduces the computation time. A major benefit of the method proposed is that no assumption about the underlying distribution of indicator dilution has to be made, as it is implicitly modeled in the reference curve. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>20740654</pmid><doi>10.1002/mrm.22583</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2011-01, Vol.65 (1), p.289-294 |
issn | 0740-3194 1522-2594 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_883039224 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Arteries - physiology Blood Flow Velocity - physiology Computer Simulation Contrast Media - pharmacokinetics curve fitting Germany hemodynamics Humans Image Interpretation, Computer-Assisted - methods Image Interpretation, Computer-Assisted - standards Imaging, Three-Dimensional - methods Imaging, Three-Dimensional - standards indicator dilution techniques Linear Models magnetic resonance angiography Magnetic Resonance Angiography - methods Magnetic Resonance Angiography - standards Models, Cardiovascular Reference Values Reproducibility of Results Sensitivity and Specificity |
title | Reference-based linear curve fitting for bolus arrival time estimation in 4D MRA and MR perfusion-weighted image sequences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T05%3A53%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reference-based%20linear%20curve%20fitting%20for%20bolus%20arrival%20time%20estimation%20in%204D%20MRA%20and%20MR%20perfusion-weighted%20image%20sequences&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Forkert,%20Nils%20Daniel&rft.date=2011-01&rft.volume=65&rft.issue=1&rft.spage=289&rft.epage=294&rft.pages=289-294&rft.issn=0740-3194&rft.eissn=1522-2594&rft.coden=MRMEEN&rft_id=info:doi/10.1002/mrm.22583&rft_dat=%3Cproquest_cross%3E820788033%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1883071217&rft_id=info:pmid/20740654&rfr_iscdi=true |