Elastomeric electrospun scaffolds of poly(l-lactide-co-trimethylene carbonate) for myocardial tissue engineering
In myocardial tissue engineering the use of synthetically bioengineered flexible patches implanted in the infarcted area is considered one of the promising strategy for cardiac repair. In this work the potentialities of a biomimetic electrospun scaffold made of a commercial copolymer of ( l )-lactic...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in medicine 2011-07, Vol.22 (7), p.1689-1699 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1699 |
---|---|
container_issue | 7 |
container_start_page | 1689 |
container_title | Journal of materials science. Materials in medicine |
container_volume | 22 |
creator | Mukherjee, Shayanti Gualandi, Chiara Focarete, Maria Letizia Ravichandran, Rajeswari Venugopal, Jayarama Reddy Raghunath, Michael Ramakrishna, Seeram |
description | In myocardial tissue engineering the use of synthetically bioengineered flexible patches implanted in the infarcted area is considered one of the promising strategy for cardiac repair. In this work the potentialities of a biomimetic electrospun scaffold made of a commercial copolymer of (
l
)-lactic acid with trimethylene carbonate (P(
l
)LA-
co
-TMC) are investigated in comparison to electrospun poly(
l
)lactic acid. The P(
l
)LA-
co
-TMC scaffold used in this work is a glassy rigid material at room temperature while it is a rubbery soft material at 37°C. Mechanical characterization results (tensile stress–strain and creep-recovery measurements) show that at 37°C electrospun P(
l
)LA-
co
-TMC displays an elastic modulus of around 20 MPa and the ability to completely recover up to 10% of deformation. Cell culture experiments show that P(
l
)LA-
co
-TMC scaffold promotes cardiomyocyte proliferation and efficiently preserve cell morphology, without hampering expression of sarcomeric alpha actinin marker, thus demonstrating its potentialities as synthetic biomaterial for myocardial tissue engineering. |
doi_str_mv | 10.1007/s10856-011-4351-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883037469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>874481255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-ec8a5a102b9aab1210e0f64dfb7d4a64447cac8c476ad05eca6fdc81089a213e3</originalsourceid><addsrcrecordid>eNqFkk2L1TAUhoMoznX0B7iRIojjIprTJE26HIbxAwbc6Lqcpidjh9ymJu3i_ntT79UBQV0FwnM-8j5h7DmItyCEeZdBWN1wAcCV1MDrB2wH2kiurLQP2U602nClpThjT3K-E0KoVuvH7KyGBkzbNjs2XwfMS9xTGl1FgdySYp7XqcoOvY9hyFX01RzD4SLwgG4ZB-Iu8iWNe1q-HQJNVDlMfZxwoTeVj6naH2K5GUYM1TLmvFJF0-04UZkx3T5ljzyGTM9O5zn7-v76y9VHfvP5w6eryxvutISFk7OoEUTdt4g91CBI-EYNvjeDwkYpZRw665RpcBCaHDZ-cLYE0mINkuQ5e33sO6f4faW8dPsxOwoBJ4pr7qyVQhrVtP8njVIWaq0LefFPEhoDskSrVUFf_oHexTVN5cVbv1oIaTcIjpAroedEvptLrJgOHYhuM9wdDXfFcLcZ7upS8-LUeO33NPyu-KW0AK9OABaHwSec3JjvOSXL5_i5YX3k8rx5oXS_4d-n_wCFW78L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>874200384</pqid></control><display><type>article</type><title>Elastomeric electrospun scaffolds of poly(l-lactide-co-trimethylene carbonate) for myocardial tissue engineering</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Mukherjee, Shayanti ; Gualandi, Chiara ; Focarete, Maria Letizia ; Ravichandran, Rajeswari ; Venugopal, Jayarama Reddy ; Raghunath, Michael ; Ramakrishna, Seeram</creator><creatorcontrib>Mukherjee, Shayanti ; Gualandi, Chiara ; Focarete, Maria Letizia ; Ravichandran, Rajeswari ; Venugopal, Jayarama Reddy ; Raghunath, Michael ; Ramakrishna, Seeram</creatorcontrib><description>In myocardial tissue engineering the use of synthetically bioengineered flexible patches implanted in the infarcted area is considered one of the promising strategy for cardiac repair. In this work the potentialities of a biomimetic electrospun scaffold made of a commercial copolymer of (
l
)-lactic acid with trimethylene carbonate (P(
l
)LA-
co
-TMC) are investigated in comparison to electrospun poly(
l
)lactic acid. The P(
l
)LA-
co
-TMC scaffold used in this work is a glassy rigid material at room temperature while it is a rubbery soft material at 37°C. Mechanical characterization results (tensile stress–strain and creep-recovery measurements) show that at 37°C electrospun P(
l
)LA-
co
-TMC displays an elastic modulus of around 20 MPa and the ability to completely recover up to 10% of deformation. Cell culture experiments show that P(
l
)LA-
co
-TMC scaffold promotes cardiomyocyte proliferation and efficiently preserve cell morphology, without hampering expression of sarcomeric alpha actinin marker, thus demonstrating its potentialities as synthetic biomaterial for myocardial tissue engineering.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-011-4351-2</identifier><identifier>PMID: 21617996</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Animals ; Biocompatible Materials - chemistry ; Bioengineering ; Biological and medical sciences ; Biomaterials ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Biotechnology ; Carbonates ; Cell Proliferation ; Ceramics ; Chemistry and Materials Science ; Composites ; Elastomers - chemistry ; Electrospinning ; Fundamental and applied biological sciences. Psychology ; Glass ; Health. Pharmaceutical industry ; Heart ; Industrial applications and implications. Economical aspects ; Materials Science ; Microscopy, Acoustic ; Miscellaneous ; Myocytes, Cardiac - cytology ; Myocytes, Cardiac - physiology ; Natural Materials ; Polyesters - chemistry ; Polymer Sciences ; Polymers ; Preserves ; Rabbits ; Regenerative Medicine/Tissue Engineering ; Scaffolds ; Stress-strain relationships ; Surfaces and Interfaces ; Thin Films ; Tissue engineering ; Tissue Engineering - methods</subject><ispartof>Journal of materials science. Materials in medicine, 2011-07, Vol.22 (7), p.1689-1699</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-ec8a5a102b9aab1210e0f64dfb7d4a64447cac8c476ad05eca6fdc81089a213e3</citedby><cites>FETCH-LOGICAL-c531t-ec8a5a102b9aab1210e0f64dfb7d4a64447cac8c476ad05eca6fdc81089a213e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-011-4351-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-011-4351-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24383854$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21617996$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mukherjee, Shayanti</creatorcontrib><creatorcontrib>Gualandi, Chiara</creatorcontrib><creatorcontrib>Focarete, Maria Letizia</creatorcontrib><creatorcontrib>Ravichandran, Rajeswari</creatorcontrib><creatorcontrib>Venugopal, Jayarama Reddy</creatorcontrib><creatorcontrib>Raghunath, Michael</creatorcontrib><creatorcontrib>Ramakrishna, Seeram</creatorcontrib><title>Elastomeric electrospun scaffolds of poly(l-lactide-co-trimethylene carbonate) for myocardial tissue engineering</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>In myocardial tissue engineering the use of synthetically bioengineered flexible patches implanted in the infarcted area is considered one of the promising strategy for cardiac repair. In this work the potentialities of a biomimetic electrospun scaffold made of a commercial copolymer of (
l
)-lactic acid with trimethylene carbonate (P(
l
)LA-
co
-TMC) are investigated in comparison to electrospun poly(
l
)lactic acid. The P(
l
)LA-
co
-TMC scaffold used in this work is a glassy rigid material at room temperature while it is a rubbery soft material at 37°C. Mechanical characterization results (tensile stress–strain and creep-recovery measurements) show that at 37°C electrospun P(
l
)LA-
co
-TMC displays an elastic modulus of around 20 MPa and the ability to completely recover up to 10% of deformation. Cell culture experiments show that P(
l
)LA-
co
-TMC scaffold promotes cardiomyocyte proliferation and efficiently preserve cell morphology, without hampering expression of sarcomeric alpha actinin marker, thus demonstrating its potentialities as synthetic biomaterial for myocardial tissue engineering.</description><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Bioengineering</subject><subject>Biological and medical sciences</subject><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Biotechnology</subject><subject>Carbonates</subject><subject>Cell Proliferation</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Elastomers - chemistry</subject><subject>Electrospinning</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glass</subject><subject>Health. Pharmaceutical industry</subject><subject>Heart</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Materials Science</subject><subject>Microscopy, Acoustic</subject><subject>Miscellaneous</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Myocytes, Cardiac - physiology</subject><subject>Natural Materials</subject><subject>Polyesters - chemistry</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Preserves</subject><subject>Rabbits</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Scaffolds</subject><subject>Stress-strain relationships</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkk2L1TAUhoMoznX0B7iRIojjIprTJE26HIbxAwbc6Lqcpidjh9ymJu3i_ntT79UBQV0FwnM-8j5h7DmItyCEeZdBWN1wAcCV1MDrB2wH2kiurLQP2U602nClpThjT3K-E0KoVuvH7KyGBkzbNjs2XwfMS9xTGl1FgdySYp7XqcoOvY9hyFX01RzD4SLwgG4ZB-Iu8iWNe1q-HQJNVDlMfZxwoTeVj6naH2K5GUYM1TLmvFJF0-04UZkx3T5ljzyGTM9O5zn7-v76y9VHfvP5w6eryxvutISFk7OoEUTdt4g91CBI-EYNvjeDwkYpZRw665RpcBCaHDZ-cLYE0mINkuQ5e33sO6f4faW8dPsxOwoBJ4pr7qyVQhrVtP8njVIWaq0LefFPEhoDskSrVUFf_oHexTVN5cVbv1oIaTcIjpAroedEvptLrJgOHYhuM9wdDXfFcLcZ7upS8-LUeO33NPyu-KW0AK9OABaHwSec3JjvOSXL5_i5YX3k8rx5oXS_4d-n_wCFW78L</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Mukherjee, Shayanti</creator><creator>Gualandi, Chiara</creator><creator>Focarete, Maria Letizia</creator><creator>Ravichandran, Rajeswari</creator><creator>Venugopal, Jayarama Reddy</creator><creator>Raghunath, Michael</creator><creator>Ramakrishna, Seeram</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope></search><sort><creationdate>20110701</creationdate><title>Elastomeric electrospun scaffolds of poly(l-lactide-co-trimethylene carbonate) for myocardial tissue engineering</title><author>Mukherjee, Shayanti ; Gualandi, Chiara ; Focarete, Maria Letizia ; Ravichandran, Rajeswari ; Venugopal, Jayarama Reddy ; Raghunath, Michael ; Ramakrishna, Seeram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-ec8a5a102b9aab1210e0f64dfb7d4a64447cac8c476ad05eca6fdc81089a213e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Bioengineering</topic><topic>Biological and medical sciences</topic><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Biotechnology</topic><topic>Carbonates</topic><topic>Cell Proliferation</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Elastomers - chemistry</topic><topic>Electrospinning</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glass</topic><topic>Health. Pharmaceutical industry</topic><topic>Heart</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Materials Science</topic><topic>Microscopy, Acoustic</topic><topic>Miscellaneous</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Myocytes, Cardiac - physiology</topic><topic>Natural Materials</topic><topic>Polyesters - chemistry</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Preserves</topic><topic>Rabbits</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Scaffolds</topic><topic>Stress-strain relationships</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukherjee, Shayanti</creatorcontrib><creatorcontrib>Gualandi, Chiara</creatorcontrib><creatorcontrib>Focarete, Maria Letizia</creatorcontrib><creatorcontrib>Ravichandran, Rajeswari</creatorcontrib><creatorcontrib>Venugopal, Jayarama Reddy</creatorcontrib><creatorcontrib>Raghunath, Michael</creatorcontrib><creatorcontrib>Ramakrishna, Seeram</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukherjee, Shayanti</au><au>Gualandi, Chiara</au><au>Focarete, Maria Letizia</au><au>Ravichandran, Rajeswari</au><au>Venugopal, Jayarama Reddy</au><au>Raghunath, Michael</au><au>Ramakrishna, Seeram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elastomeric electrospun scaffolds of poly(l-lactide-co-trimethylene carbonate) for myocardial tissue engineering</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>22</volume><issue>7</issue><spage>1689</spage><epage>1699</epage><pages>1689-1699</pages><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>In myocardial tissue engineering the use of synthetically bioengineered flexible patches implanted in the infarcted area is considered one of the promising strategy for cardiac repair. In this work the potentialities of a biomimetic electrospun scaffold made of a commercial copolymer of (
l
)-lactic acid with trimethylene carbonate (P(
l
)LA-
co
-TMC) are investigated in comparison to electrospun poly(
l
)lactic acid. The P(
l
)LA-
co
-TMC scaffold used in this work is a glassy rigid material at room temperature while it is a rubbery soft material at 37°C. Mechanical characterization results (tensile stress–strain and creep-recovery measurements) show that at 37°C electrospun P(
l
)LA-
co
-TMC displays an elastic modulus of around 20 MPa and the ability to completely recover up to 10% of deformation. Cell culture experiments show that P(
l
)LA-
co
-TMC scaffold promotes cardiomyocyte proliferation and efficiently preserve cell morphology, without hampering expression of sarcomeric alpha actinin marker, thus demonstrating its potentialities as synthetic biomaterial for myocardial tissue engineering.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>21617996</pmid><doi>10.1007/s10856-011-4351-2</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4530 |
ispartof | Journal of materials science. Materials in medicine, 2011-07, Vol.22 (7), p.1689-1699 |
issn | 0957-4530 1573-4838 |
language | eng |
recordid | cdi_proquest_miscellaneous_883037469 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Animals Biocompatible Materials - chemistry Bioengineering Biological and medical sciences Biomaterials Biomedical Engineering and Bioengineering Biomedical materials Biotechnology Carbonates Cell Proliferation Ceramics Chemistry and Materials Science Composites Elastomers - chemistry Electrospinning Fundamental and applied biological sciences. Psychology Glass Health. Pharmaceutical industry Heart Industrial applications and implications. Economical aspects Materials Science Microscopy, Acoustic Miscellaneous Myocytes, Cardiac - cytology Myocytes, Cardiac - physiology Natural Materials Polyesters - chemistry Polymer Sciences Polymers Preserves Rabbits Regenerative Medicine/Tissue Engineering Scaffolds Stress-strain relationships Surfaces and Interfaces Thin Films Tissue engineering Tissue Engineering - methods |
title | Elastomeric electrospun scaffolds of poly(l-lactide-co-trimethylene carbonate) for myocardial tissue engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T05%3A48%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elastomeric%20electrospun%20scaffolds%20of%20poly(l-lactide-co-trimethylene%20carbonate)%20for%20myocardial%20tissue%20engineering&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Mukherjee,%20Shayanti&rft.date=2011-07-01&rft.volume=22&rft.issue=7&rft.spage=1689&rft.epage=1699&rft.pages=1689-1699&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-011-4351-2&rft_dat=%3Cproquest_cross%3E874481255%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=874200384&rft_id=info:pmid/21617996&rfr_iscdi=true |