On the equivalence between kernel self-organising maps and self-organising mixture density networks
The kernel method has become a useful trick and has been widely applied to various learning models to extend their nonlinear approximation and classification capabilities. Such extensions have also recently occurred to the Self-Organising Map (SOM). In this paper, two recently proposed kernel SOMs a...
Gespeichert in:
Veröffentlicht in: | Neural networks 2006-07, Vol.19 (6), p.780-784 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 784 |
---|---|
container_issue | 6 |
container_start_page | 780 |
container_title | Neural networks |
container_volume | 19 |
creator | Yin, Hujun |
description | The kernel method has become a useful trick and has been widely applied to various learning models to extend their nonlinear approximation and classification capabilities. Such extensions have also recently occurred to the Self-Organising Map (SOM). In this paper, two recently proposed kernel SOMs are reviewed, together with their link to an energy function. The Self-Organising Mixture Network is an extension of the SOM for mixture density modelling. This paper shows that with an isotropic, density-type kernel function, the kernel SOM is equivalent to a homoscedastic Self-Organising Mixture Network, an entropy-based density estimator. This revelation on the one hand explains that kernelising SOM can improve classification performance by acquiring better probability models of the data; but on the other hand it also explains that the SOM already naturally approximates the kernel method. |
doi_str_mv | 10.1016/j.neunet.2006.05.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883034355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608006000748</els_id><sourcerecordid>68719271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-720c137b5e5cb911171b01efee0f4377b5f4f8f2e69f43daafd801447f0bd73b3</originalsourceid><addsrcrecordid>eNp9kU1P3DAQQK2qqGwX_gGqfCmcko7jOHYulSoEpdJKXOjZcpwxeMk6i51A-ff1alfigMRpNJo3H5pHyBmDkgFrfqzLgHPAqawAmhJECSA_kQVTsi0qqarPZAGq5UUDCo7J15TWkEFV8y_kmDVStIqLBbG3gU4PSPFp9s9mwGCRdji9IAb6iDHgQBMOrhjjvQk--XBPN2abqAn9-4L_N80RaY8h-emV5uNexviYTsiRM0PC00Nckr_XV3eXN8Xq9vefy1-rwtaCTYWswDIuO4HCdi1jTLIOGDpEcDWXueBqp1yFTZvz3hjXK2B1LR10veQdX5KL_dxtHJ9mTJPe-GRxGEzAcU5aKQ685kJk8vxDslGStZVkGaz3oI1jShGd3ka_MfFVM9A7DXqt9xr0ToMGobOG3PbtMH_uNti_NR3-noHvB8AkawYXTbA-vXGqyvt5lbmfew7z3549Rp2s30nqfUQ76X70H1_yHxk0qag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68719271</pqid></control><display><type>article</type><title>On the equivalence between kernel self-organising maps and self-organising mixture density networks</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Yin, Hujun</creator><creatorcontrib>Yin, Hujun</creatorcontrib><description>The kernel method has become a useful trick and has been widely applied to various learning models to extend their nonlinear approximation and classification capabilities. Such extensions have also recently occurred to the Self-Organising Map (SOM). In this paper, two recently proposed kernel SOMs are reviewed, together with their link to an energy function. The Self-Organising Mixture Network is an extension of the SOM for mixture density modelling. This paper shows that with an isotropic, density-type kernel function, the kernel SOM is equivalent to a homoscedastic Self-Organising Mixture Network, an entropy-based density estimator. This revelation on the one hand explains that kernelising SOM can improve classification performance by acquiring better probability models of the data; but on the other hand it also explains that the SOM already naturally approximates the kernel method.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2006.05.007</identifier><identifier>PMID: 16759835</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Bayes classifier ; Cluster Analysis ; Computer science; control theory; systems ; Connectionism. Neural networks ; Exact sciences and technology ; Kernel method ; Kernel SOM ; Mixture models ; Neural Networks (Computer) ; Pattern Recognition, Automated ; SOM</subject><ispartof>Neural networks, 2006-07, Vol.19 (6), p.780-784</ispartof><rights>2006 Elsevier Ltd</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-720c137b5e5cb911171b01efee0f4377b5f4f8f2e69f43daafd801447f0bd73b3</citedby><cites>FETCH-LOGICAL-c451t-720c137b5e5cb911171b01efee0f4377b5f4f8f2e69f43daafd801447f0bd73b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2006.05.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18219232$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16759835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Hujun</creatorcontrib><title>On the equivalence between kernel self-organising maps and self-organising mixture density networks</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>The kernel method has become a useful trick and has been widely applied to various learning models to extend their nonlinear approximation and classification capabilities. Such extensions have also recently occurred to the Self-Organising Map (SOM). In this paper, two recently proposed kernel SOMs are reviewed, together with their link to an energy function. The Self-Organising Mixture Network is an extension of the SOM for mixture density modelling. This paper shows that with an isotropic, density-type kernel function, the kernel SOM is equivalent to a homoscedastic Self-Organising Mixture Network, an entropy-based density estimator. This revelation on the one hand explains that kernelising SOM can improve classification performance by acquiring better probability models of the data; but on the other hand it also explains that the SOM already naturally approximates the kernel method.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Bayes classifier</subject><subject>Cluster Analysis</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><subject>Kernel method</subject><subject>Kernel SOM</subject><subject>Mixture models</subject><subject>Neural Networks (Computer)</subject><subject>Pattern Recognition, Automated</subject><subject>SOM</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1P3DAQQK2qqGwX_gGqfCmcko7jOHYulSoEpdJKXOjZcpwxeMk6i51A-ff1alfigMRpNJo3H5pHyBmDkgFrfqzLgHPAqawAmhJECSA_kQVTsi0qqarPZAGq5UUDCo7J15TWkEFV8y_kmDVStIqLBbG3gU4PSPFp9s9mwGCRdji9IAb6iDHgQBMOrhjjvQk--XBPN2abqAn9-4L_N80RaY8h-emV5uNexviYTsiRM0PC00Nckr_XV3eXN8Xq9vefy1-rwtaCTYWswDIuO4HCdi1jTLIOGDpEcDWXueBqp1yFTZvz3hjXK2B1LR10veQdX5KL_dxtHJ9mTJPe-GRxGEzAcU5aKQ685kJk8vxDslGStZVkGaz3oI1jShGd3ka_MfFVM9A7DXqt9xr0ToMGobOG3PbtMH_uNti_NR3-noHvB8AkawYXTbA-vXGqyvt5lbmfew7z3549Rp2s30nqfUQ76X70H1_yHxk0qag</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Yin, Hujun</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20060701</creationdate><title>On the equivalence between kernel self-organising maps and self-organising mixture density networks</title><author>Yin, Hujun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-720c137b5e5cb911171b01efee0f4377b5f4f8f2e69f43daafd801447f0bd73b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Bayes classifier</topic><topic>Cluster Analysis</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><topic>Kernel method</topic><topic>Kernel SOM</topic><topic>Mixture models</topic><topic>Neural Networks (Computer)</topic><topic>Pattern Recognition, Automated</topic><topic>SOM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Hujun</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Hujun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the equivalence between kernel self-organising maps and self-organising mixture density networks</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2006-07-01</date><risdate>2006</risdate><volume>19</volume><issue>6</issue><spage>780</spage><epage>784</epage><pages>780-784</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>The kernel method has become a useful trick and has been widely applied to various learning models to extend their nonlinear approximation and classification capabilities. Such extensions have also recently occurred to the Self-Organising Map (SOM). In this paper, two recently proposed kernel SOMs are reviewed, together with their link to an energy function. The Self-Organising Mixture Network is an extension of the SOM for mixture density modelling. This paper shows that with an isotropic, density-type kernel function, the kernel SOM is equivalent to a homoscedastic Self-Organising Mixture Network, an entropy-based density estimator. This revelation on the one hand explains that kernelising SOM can improve classification performance by acquiring better probability models of the data; but on the other hand it also explains that the SOM already naturally approximates the kernel method.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>16759835</pmid><doi>10.1016/j.neunet.2006.05.007</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2006-07, Vol.19 (6), p.780-784 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_883034355 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Algorithms Applied sciences Artificial Intelligence Bayes classifier Cluster Analysis Computer science control theory systems Connectionism. Neural networks Exact sciences and technology Kernel method Kernel SOM Mixture models Neural Networks (Computer) Pattern Recognition, Automated SOM |
title | On the equivalence between kernel self-organising maps and self-organising mixture density networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A27%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20equivalence%20between%20kernel%20self-organising%20maps%20and%20self-organising%20mixture%20density%20networks&rft.jtitle=Neural%20networks&rft.au=Yin,%20Hujun&rft.date=2006-07-01&rft.volume=19&rft.issue=6&rft.spage=780&rft.epage=784&rft.pages=780-784&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2006.05.007&rft_dat=%3Cproquest_cross%3E68719271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68719271&rft_id=info:pmid/16759835&rft_els_id=S0893608006000748&rfr_iscdi=true |