On the equivalence between kernel self-organising maps and self-organising mixture density networks

The kernel method has become a useful trick and has been widely applied to various learning models to extend their nonlinear approximation and classification capabilities. Such extensions have also recently occurred to the Self-Organising Map (SOM). In this paper, two recently proposed kernel SOMs a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2006-07, Vol.19 (6), p.780-784
1. Verfasser: Yin, Hujun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 784
container_issue 6
container_start_page 780
container_title Neural networks
container_volume 19
creator Yin, Hujun
description The kernel method has become a useful trick and has been widely applied to various learning models to extend their nonlinear approximation and classification capabilities. Such extensions have also recently occurred to the Self-Organising Map (SOM). In this paper, two recently proposed kernel SOMs are reviewed, together with their link to an energy function. The Self-Organising Mixture Network is an extension of the SOM for mixture density modelling. This paper shows that with an isotropic, density-type kernel function, the kernel SOM is equivalent to a homoscedastic Self-Organising Mixture Network, an entropy-based density estimator. This revelation on the one hand explains that kernelising SOM can improve classification performance by acquiring better probability models of the data; but on the other hand it also explains that the SOM already naturally approximates the kernel method.
doi_str_mv 10.1016/j.neunet.2006.05.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883034355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608006000748</els_id><sourcerecordid>68719271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-720c137b5e5cb911171b01efee0f4377b5f4f8f2e69f43daafd801447f0bd73b3</originalsourceid><addsrcrecordid>eNp9kU1P3DAQQK2qqGwX_gGqfCmcko7jOHYulSoEpdJKXOjZcpwxeMk6i51A-ff1alfigMRpNJo3H5pHyBmDkgFrfqzLgHPAqawAmhJECSA_kQVTsi0qqarPZAGq5UUDCo7J15TWkEFV8y_kmDVStIqLBbG3gU4PSPFp9s9mwGCRdji9IAb6iDHgQBMOrhjjvQk--XBPN2abqAn9-4L_N80RaY8h-emV5uNexviYTsiRM0PC00Nckr_XV3eXN8Xq9vefy1-rwtaCTYWswDIuO4HCdi1jTLIOGDpEcDWXueBqp1yFTZvz3hjXK2B1LR10veQdX5KL_dxtHJ9mTJPe-GRxGEzAcU5aKQ685kJk8vxDslGStZVkGaz3oI1jShGd3ka_MfFVM9A7DXqt9xr0ToMGobOG3PbtMH_uNti_NR3-noHvB8AkawYXTbA-vXGqyvt5lbmfew7z3549Rp2s30nqfUQ76X70H1_yHxk0qag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68719271</pqid></control><display><type>article</type><title>On the equivalence between kernel self-organising maps and self-organising mixture density networks</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Yin, Hujun</creator><creatorcontrib>Yin, Hujun</creatorcontrib><description>The kernel method has become a useful trick and has been widely applied to various learning models to extend their nonlinear approximation and classification capabilities. Such extensions have also recently occurred to the Self-Organising Map (SOM). In this paper, two recently proposed kernel SOMs are reviewed, together with their link to an energy function. The Self-Organising Mixture Network is an extension of the SOM for mixture density modelling. This paper shows that with an isotropic, density-type kernel function, the kernel SOM is equivalent to a homoscedastic Self-Organising Mixture Network, an entropy-based density estimator. This revelation on the one hand explains that kernelising SOM can improve classification performance by acquiring better probability models of the data; but on the other hand it also explains that the SOM already naturally approximates the kernel method.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2006.05.007</identifier><identifier>PMID: 16759835</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Bayes classifier ; Cluster Analysis ; Computer science; control theory; systems ; Connectionism. Neural networks ; Exact sciences and technology ; Kernel method ; Kernel SOM ; Mixture models ; Neural Networks (Computer) ; Pattern Recognition, Automated ; SOM</subject><ispartof>Neural networks, 2006-07, Vol.19 (6), p.780-784</ispartof><rights>2006 Elsevier Ltd</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-720c137b5e5cb911171b01efee0f4377b5f4f8f2e69f43daafd801447f0bd73b3</citedby><cites>FETCH-LOGICAL-c451t-720c137b5e5cb911171b01efee0f4377b5f4f8f2e69f43daafd801447f0bd73b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2006.05.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18219232$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16759835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Hujun</creatorcontrib><title>On the equivalence between kernel self-organising maps and self-organising mixture density networks</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>The kernel method has become a useful trick and has been widely applied to various learning models to extend their nonlinear approximation and classification capabilities. Such extensions have also recently occurred to the Self-Organising Map (SOM). In this paper, two recently proposed kernel SOMs are reviewed, together with their link to an energy function. The Self-Organising Mixture Network is an extension of the SOM for mixture density modelling. This paper shows that with an isotropic, density-type kernel function, the kernel SOM is equivalent to a homoscedastic Self-Organising Mixture Network, an entropy-based density estimator. This revelation on the one hand explains that kernelising SOM can improve classification performance by acquiring better probability models of the data; but on the other hand it also explains that the SOM already naturally approximates the kernel method.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Bayes classifier</subject><subject>Cluster Analysis</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><subject>Kernel method</subject><subject>Kernel SOM</subject><subject>Mixture models</subject><subject>Neural Networks (Computer)</subject><subject>Pattern Recognition, Automated</subject><subject>SOM</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1P3DAQQK2qqGwX_gGqfCmcko7jOHYulSoEpdJKXOjZcpwxeMk6i51A-ff1alfigMRpNJo3H5pHyBmDkgFrfqzLgHPAqawAmhJECSA_kQVTsi0qqarPZAGq5UUDCo7J15TWkEFV8y_kmDVStIqLBbG3gU4PSPFp9s9mwGCRdji9IAb6iDHgQBMOrhjjvQk--XBPN2abqAn9-4L_N80RaY8h-emV5uNexviYTsiRM0PC00Nckr_XV3eXN8Xq9vefy1-rwtaCTYWswDIuO4HCdi1jTLIOGDpEcDWXueBqp1yFTZvz3hjXK2B1LR10veQdX5KL_dxtHJ9mTJPe-GRxGEzAcU5aKQ685kJk8vxDslGStZVkGaz3oI1jShGd3ka_MfFVM9A7DXqt9xr0ToMGobOG3PbtMH_uNti_NR3-noHvB8AkawYXTbA-vXGqyvt5lbmfew7z3549Rp2s30nqfUQ76X70H1_yHxk0qag</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Yin, Hujun</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20060701</creationdate><title>On the equivalence between kernel self-organising maps and self-organising mixture density networks</title><author>Yin, Hujun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-720c137b5e5cb911171b01efee0f4377b5f4f8f2e69f43daafd801447f0bd73b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Bayes classifier</topic><topic>Cluster Analysis</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><topic>Kernel method</topic><topic>Kernel SOM</topic><topic>Mixture models</topic><topic>Neural Networks (Computer)</topic><topic>Pattern Recognition, Automated</topic><topic>SOM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Hujun</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Hujun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the equivalence between kernel self-organising maps and self-organising mixture density networks</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2006-07-01</date><risdate>2006</risdate><volume>19</volume><issue>6</issue><spage>780</spage><epage>784</epage><pages>780-784</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>The kernel method has become a useful trick and has been widely applied to various learning models to extend their nonlinear approximation and classification capabilities. Such extensions have also recently occurred to the Self-Organising Map (SOM). In this paper, two recently proposed kernel SOMs are reviewed, together with their link to an energy function. The Self-Organising Mixture Network is an extension of the SOM for mixture density modelling. This paper shows that with an isotropic, density-type kernel function, the kernel SOM is equivalent to a homoscedastic Self-Organising Mixture Network, an entropy-based density estimator. This revelation on the one hand explains that kernelising SOM can improve classification performance by acquiring better probability models of the data; but on the other hand it also explains that the SOM already naturally approximates the kernel method.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>16759835</pmid><doi>10.1016/j.neunet.2006.05.007</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2006-07, Vol.19 (6), p.780-784
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_883034355
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Algorithms
Applied sciences
Artificial Intelligence
Bayes classifier
Cluster Analysis
Computer science
control theory
systems
Connectionism. Neural networks
Exact sciences and technology
Kernel method
Kernel SOM
Mixture models
Neural Networks (Computer)
Pattern Recognition, Automated
SOM
title On the equivalence between kernel self-organising maps and self-organising mixture density networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A27%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20equivalence%20between%20kernel%20self-organising%20maps%20and%20self-organising%20mixture%20density%20networks&rft.jtitle=Neural%20networks&rft.au=Yin,%20Hujun&rft.date=2006-07-01&rft.volume=19&rft.issue=6&rft.spage=780&rft.epage=784&rft.pages=780-784&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2006.05.007&rft_dat=%3Cproquest_cross%3E68719271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68719271&rft_id=info:pmid/16759835&rft_els_id=S0893608006000748&rfr_iscdi=true