The SNARE protein SNAP-29 interacts with the GTPase Rab3A: Implications for membrane trafficking in myelinating glia

During myelin formation, vast amounts of specialized membrane proteins and lipids are trafficked toward the growing sheath in cell surface‐directed transport vesicles. Soluble N‐ethylmaleimide‐sensitive factor (NSF) attachment proteins (SNAPs) are important components of molecular complexes required...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroscience research 2009-11, Vol.87 (15), p.3465-3479
Hauptverfasser: Schardt, Anke, Brinkmann, Bastian G., Mitkovski, Miso, Sereda, Michael W., Werner, Hauke B., Nave, Klaus-Armin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3479
container_issue 15
container_start_page 3465
container_title Journal of neuroscience research
container_volume 87
creator Schardt, Anke
Brinkmann, Bastian G.
Mitkovski, Miso
Sereda, Michael W.
Werner, Hauke B.
Nave, Klaus-Armin
description During myelin formation, vast amounts of specialized membrane proteins and lipids are trafficked toward the growing sheath in cell surface‐directed transport vesicles. Soluble N‐ethylmaleimide‐sensitive factor (NSF) attachment proteins (SNAPs) are important components of molecular complexes required for membrane fusion. We have analyzed the expression profile and molecular interactions of SNAP‐29 in the nervous system. In addition to its known enrichment in neuronal synapses, SNAP‐29 is abundant in oligodendrocytes during myelination and in noncompact myelin of the peripheral nervous system. By yeast two‐hybrid screen and coimmunoprecipitation, we found that the GTPases Rab3A, Rab24, and septin 4 bind to the N‐terminal domain of SNAP‐29. The interaction with Rab24 or septin 4 was GTP independent. In contrast, interaction between SNAP‐29 and Rab3A was GTP dependent, and colocalization was extensive both in synapses and in myelinating glia. In HEK293 cells, cytoplasmic SNAP‐29 pools were redistributed upon coexpression with Rab3A, and surface‐directed trafficking of myelin proteolipid protein was enhanced by overexpression of SNAP‐29 and Rab3A. Interestingly, the abundance of SNAP‐29 in sciatic nerves was increased during remyelination and in a rat model of Charcot‐Marie‐Tooth disease, two pathological situations with increased myelin membrane biogenesis. We suggest that Rab3A may regulate SNAP‐29‐mediated membrane fusion during myelination. © 2009 Wiley‐Liss, Inc.
doi_str_mv 10.1002/jnr.22005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883033390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>883033390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4295-150df921a6c267648c3784efcdb99504f58316aa5d68fed7ce939f0eaee8b93</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0EoqFw4A8g3xCHbcfr3bXNLUQlbalCSCNxtLze2dbtfgTbUcm_r0sCnBCn0UjPPJqZl5C3DE4YQH56N_iTPAcon5EJAyWyoizEczIBXkFWAMuPyKsQ7gBAqZK_JEdMMQFMygmJ61uk14vp6oxu_BjRDU_dMssVdUNEb2wM9MHFWxoTOF8vTUC6MjWffqQX_aZz1kQ3DoG2o6c99rU3A9LoTds6e--Gm6Sh_Q47NyQwtTedM6_Ji9Z0Ad8c6jG5_ny2np1nV1_nF7PpVWaLXJUZK6FpVc5MZfNKVIW0XMgCW9vU6Q4o2lJyVhlTNpVssREWFVctoEGUteLH5P3emg77scUQde-Cxa5LG47boKXkwDlX8F9S8AIkyIol8sOetH4MwWOrN971xu80A_2UhU5Z6F9ZJPbdwbqte2z-kofnJ-B0Dzy4Dnf_NunLxeq3MttPuBDx558J4-91Jbgo9ffFXK-_iNW3T7NLveSPkFehjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734080861</pqid></control><display><type>article</type><title>The SNARE protein SNAP-29 interacts with the GTPase Rab3A: Implications for membrane trafficking in myelinating glia</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Schardt, Anke ; Brinkmann, Bastian G. ; Mitkovski, Miso ; Sereda, Michael W. ; Werner, Hauke B. ; Nave, Klaus-Armin</creator><creatorcontrib>Schardt, Anke ; Brinkmann, Bastian G. ; Mitkovski, Miso ; Sereda, Michael W. ; Werner, Hauke B. ; Nave, Klaus-Armin</creatorcontrib><description>During myelin formation, vast amounts of specialized membrane proteins and lipids are trafficked toward the growing sheath in cell surface‐directed transport vesicles. Soluble N‐ethylmaleimide‐sensitive factor (NSF) attachment proteins (SNAPs) are important components of molecular complexes required for membrane fusion. We have analyzed the expression profile and molecular interactions of SNAP‐29 in the nervous system. In addition to its known enrichment in neuronal synapses, SNAP‐29 is abundant in oligodendrocytes during myelination and in noncompact myelin of the peripheral nervous system. By yeast two‐hybrid screen and coimmunoprecipitation, we found that the GTPases Rab3A, Rab24, and septin 4 bind to the N‐terminal domain of SNAP‐29. The interaction with Rab24 or septin 4 was GTP independent. In contrast, interaction between SNAP‐29 and Rab3A was GTP dependent, and colocalization was extensive both in synapses and in myelinating glia. In HEK293 cells, cytoplasmic SNAP‐29 pools were redistributed upon coexpression with Rab3A, and surface‐directed trafficking of myelin proteolipid protein was enhanced by overexpression of SNAP‐29 and Rab3A. Interestingly, the abundance of SNAP‐29 in sciatic nerves was increased during remyelination and in a rat model of Charcot‐Marie‐Tooth disease, two pathological situations with increased myelin membrane biogenesis. We suggest that Rab3A may regulate SNAP‐29‐mediated membrane fusion during myelination. © 2009 Wiley‐Liss, Inc.</description><identifier>ISSN: 0360-4012</identifier><identifier>ISSN: 1097-4547</identifier><identifier>EISSN: 1097-4547</identifier><identifier>DOI: 10.1002/jnr.22005</identifier><identifier>PMID: 19170188</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Animals, Newborn ; Binding Sites - physiology ; Cell Differentiation - physiology ; Cell Line ; Cell Membrane - metabolism ; Cell Membrane - ultrastructure ; Cells, Cultured ; Central Nervous System - cytology ; Central Nervous System - growth &amp; development ; Central Nervous System - metabolism ; Charcot-Marie-Tooth Disease - metabolism ; Charcot-Marie-Tooth Disease - physiopathology ; Charcot-Marie-Tooth neuropathy ; Cytoskeletal Proteins - metabolism ; Disease Models, Animal ; Gene Expression Regulation, Developmental - physiology ; GTP-Binding Proteins - metabolism ; Guanosine Triphosphate - metabolism ; Membrane Fusion - physiology ; membrane trafficking ; Mice ; Mice, Inbred C57BL ; Myelin Proteolipid Protein - metabolism ; Myelin Sheath - metabolism ; Myelin Sheath - ultrastructure ; Nerve Fibers, Myelinated - metabolism ; Nerve Fibers, Myelinated - ultrastructure ; oligodendrocyte ; Protein Binding - physiology ; Protein Structure, Tertiary - physiology ; Protein Transport - physiology ; Qb-SNARE Proteins - metabolism ; Qc-SNARE Proteins - metabolism ; rab GTP-Binding Proteins - metabolism ; rab3A ; rab3A GTP-Binding Protein - metabolism ; Rats ; remyelination ; Schwann cell ; Septins ; SNARE proteins ; Synaptic Membranes - metabolism ; Two-Hybrid System Techniques</subject><ispartof>Journal of neuroscience research, 2009-11, Vol.87 (15), p.3465-3479</ispartof><rights>Copyright © 2009 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4295-150df921a6c267648c3784efcdb99504f58316aa5d68fed7ce939f0eaee8b93</citedby><cites>FETCH-LOGICAL-c4295-150df921a6c267648c3784efcdb99504f58316aa5d68fed7ce939f0eaee8b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjnr.22005$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjnr.22005$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19170188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schardt, Anke</creatorcontrib><creatorcontrib>Brinkmann, Bastian G.</creatorcontrib><creatorcontrib>Mitkovski, Miso</creatorcontrib><creatorcontrib>Sereda, Michael W.</creatorcontrib><creatorcontrib>Werner, Hauke B.</creatorcontrib><creatorcontrib>Nave, Klaus-Armin</creatorcontrib><title>The SNARE protein SNAP-29 interacts with the GTPase Rab3A: Implications for membrane trafficking in myelinating glia</title><title>Journal of neuroscience research</title><addtitle>J. Neurosci. Res</addtitle><description>During myelin formation, vast amounts of specialized membrane proteins and lipids are trafficked toward the growing sheath in cell surface‐directed transport vesicles. Soluble N‐ethylmaleimide‐sensitive factor (NSF) attachment proteins (SNAPs) are important components of molecular complexes required for membrane fusion. We have analyzed the expression profile and molecular interactions of SNAP‐29 in the nervous system. In addition to its known enrichment in neuronal synapses, SNAP‐29 is abundant in oligodendrocytes during myelination and in noncompact myelin of the peripheral nervous system. By yeast two‐hybrid screen and coimmunoprecipitation, we found that the GTPases Rab3A, Rab24, and septin 4 bind to the N‐terminal domain of SNAP‐29. The interaction with Rab24 or septin 4 was GTP independent. In contrast, interaction between SNAP‐29 and Rab3A was GTP dependent, and colocalization was extensive both in synapses and in myelinating glia. In HEK293 cells, cytoplasmic SNAP‐29 pools were redistributed upon coexpression with Rab3A, and surface‐directed trafficking of myelin proteolipid protein was enhanced by overexpression of SNAP‐29 and Rab3A. Interestingly, the abundance of SNAP‐29 in sciatic nerves was increased during remyelination and in a rat model of Charcot‐Marie‐Tooth disease, two pathological situations with increased myelin membrane biogenesis. We suggest that Rab3A may regulate SNAP‐29‐mediated membrane fusion during myelination. © 2009 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Binding Sites - physiology</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Line</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Membrane - ultrastructure</subject><subject>Cells, Cultured</subject><subject>Central Nervous System - cytology</subject><subject>Central Nervous System - growth &amp; development</subject><subject>Central Nervous System - metabolism</subject><subject>Charcot-Marie-Tooth Disease - metabolism</subject><subject>Charcot-Marie-Tooth Disease - physiopathology</subject><subject>Charcot-Marie-Tooth neuropathy</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>Disease Models, Animal</subject><subject>Gene Expression Regulation, Developmental - physiology</subject><subject>GTP-Binding Proteins - metabolism</subject><subject>Guanosine Triphosphate - metabolism</subject><subject>Membrane Fusion - physiology</subject><subject>membrane trafficking</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Myelin Proteolipid Protein - metabolism</subject><subject>Myelin Sheath - metabolism</subject><subject>Myelin Sheath - ultrastructure</subject><subject>Nerve Fibers, Myelinated - metabolism</subject><subject>Nerve Fibers, Myelinated - ultrastructure</subject><subject>oligodendrocyte</subject><subject>Protein Binding - physiology</subject><subject>Protein Structure, Tertiary - physiology</subject><subject>Protein Transport - physiology</subject><subject>Qb-SNARE Proteins - metabolism</subject><subject>Qc-SNARE Proteins - metabolism</subject><subject>rab GTP-Binding Proteins - metabolism</subject><subject>rab3A</subject><subject>rab3A GTP-Binding Protein - metabolism</subject><subject>Rats</subject><subject>remyelination</subject><subject>Schwann cell</subject><subject>Septins</subject><subject>SNARE proteins</subject><subject>Synaptic Membranes - metabolism</subject><subject>Two-Hybrid System Techniques</subject><issn>0360-4012</issn><issn>1097-4547</issn><issn>1097-4547</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1vEzEQhi0EoqFw4A8g3xCHbcfr3bXNLUQlbalCSCNxtLze2dbtfgTbUcm_r0sCnBCn0UjPPJqZl5C3DE4YQH56N_iTPAcon5EJAyWyoizEczIBXkFWAMuPyKsQ7gBAqZK_JEdMMQFMygmJ61uk14vp6oxu_BjRDU_dMssVdUNEb2wM9MHFWxoTOF8vTUC6MjWffqQX_aZz1kQ3DoG2o6c99rU3A9LoTds6e--Gm6Sh_Q47NyQwtTedM6_Ji9Z0Ad8c6jG5_ny2np1nV1_nF7PpVWaLXJUZK6FpVc5MZfNKVIW0XMgCW9vU6Q4o2lJyVhlTNpVssREWFVctoEGUteLH5P3emg77scUQde-Cxa5LG47boKXkwDlX8F9S8AIkyIol8sOetH4MwWOrN971xu80A_2UhU5Z6F9ZJPbdwbqte2z-kofnJ-B0Dzy4Dnf_NunLxeq3MttPuBDx558J4-91Jbgo9ffFXK-_iNW3T7NLveSPkFehjg</recordid><startdate>20091115</startdate><enddate>20091115</enddate><creator>Schardt, Anke</creator><creator>Brinkmann, Bastian G.</creator><creator>Mitkovski, Miso</creator><creator>Sereda, Michael W.</creator><creator>Werner, Hauke B.</creator><creator>Nave, Klaus-Armin</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20091115</creationdate><title>The SNARE protein SNAP-29 interacts with the GTPase Rab3A: Implications for membrane trafficking in myelinating glia</title><author>Schardt, Anke ; Brinkmann, Bastian G. ; Mitkovski, Miso ; Sereda, Michael W. ; Werner, Hauke B. ; Nave, Klaus-Armin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4295-150df921a6c267648c3784efcdb99504f58316aa5d68fed7ce939f0eaee8b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Binding Sites - physiology</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Line</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Membrane - ultrastructure</topic><topic>Cells, Cultured</topic><topic>Central Nervous System - cytology</topic><topic>Central Nervous System - growth &amp; development</topic><topic>Central Nervous System - metabolism</topic><topic>Charcot-Marie-Tooth Disease - metabolism</topic><topic>Charcot-Marie-Tooth Disease - physiopathology</topic><topic>Charcot-Marie-Tooth neuropathy</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>Disease Models, Animal</topic><topic>Gene Expression Regulation, Developmental - physiology</topic><topic>GTP-Binding Proteins - metabolism</topic><topic>Guanosine Triphosphate - metabolism</topic><topic>Membrane Fusion - physiology</topic><topic>membrane trafficking</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Myelin Proteolipid Protein - metabolism</topic><topic>Myelin Sheath - metabolism</topic><topic>Myelin Sheath - ultrastructure</topic><topic>Nerve Fibers, Myelinated - metabolism</topic><topic>Nerve Fibers, Myelinated - ultrastructure</topic><topic>oligodendrocyte</topic><topic>Protein Binding - physiology</topic><topic>Protein Structure, Tertiary - physiology</topic><topic>Protein Transport - physiology</topic><topic>Qb-SNARE Proteins - metabolism</topic><topic>Qc-SNARE Proteins - metabolism</topic><topic>rab GTP-Binding Proteins - metabolism</topic><topic>rab3A</topic><topic>rab3A GTP-Binding Protein - metabolism</topic><topic>Rats</topic><topic>remyelination</topic><topic>Schwann cell</topic><topic>Septins</topic><topic>SNARE proteins</topic><topic>Synaptic Membranes - metabolism</topic><topic>Two-Hybrid System Techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schardt, Anke</creatorcontrib><creatorcontrib>Brinkmann, Bastian G.</creatorcontrib><creatorcontrib>Mitkovski, Miso</creatorcontrib><creatorcontrib>Sereda, Michael W.</creatorcontrib><creatorcontrib>Werner, Hauke B.</creatorcontrib><creatorcontrib>Nave, Klaus-Armin</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Journal of neuroscience research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schardt, Anke</au><au>Brinkmann, Bastian G.</au><au>Mitkovski, Miso</au><au>Sereda, Michael W.</au><au>Werner, Hauke B.</au><au>Nave, Klaus-Armin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The SNARE protein SNAP-29 interacts with the GTPase Rab3A: Implications for membrane trafficking in myelinating glia</atitle><jtitle>Journal of neuroscience research</jtitle><addtitle>J. Neurosci. Res</addtitle><date>2009-11-15</date><risdate>2009</risdate><volume>87</volume><issue>15</issue><spage>3465</spage><epage>3479</epage><pages>3465-3479</pages><issn>0360-4012</issn><issn>1097-4547</issn><eissn>1097-4547</eissn><abstract>During myelin formation, vast amounts of specialized membrane proteins and lipids are trafficked toward the growing sheath in cell surface‐directed transport vesicles. Soluble N‐ethylmaleimide‐sensitive factor (NSF) attachment proteins (SNAPs) are important components of molecular complexes required for membrane fusion. We have analyzed the expression profile and molecular interactions of SNAP‐29 in the nervous system. In addition to its known enrichment in neuronal synapses, SNAP‐29 is abundant in oligodendrocytes during myelination and in noncompact myelin of the peripheral nervous system. By yeast two‐hybrid screen and coimmunoprecipitation, we found that the GTPases Rab3A, Rab24, and septin 4 bind to the N‐terminal domain of SNAP‐29. The interaction with Rab24 or septin 4 was GTP independent. In contrast, interaction between SNAP‐29 and Rab3A was GTP dependent, and colocalization was extensive both in synapses and in myelinating glia. In HEK293 cells, cytoplasmic SNAP‐29 pools were redistributed upon coexpression with Rab3A, and surface‐directed trafficking of myelin proteolipid protein was enhanced by overexpression of SNAP‐29 and Rab3A. Interestingly, the abundance of SNAP‐29 in sciatic nerves was increased during remyelination and in a rat model of Charcot‐Marie‐Tooth disease, two pathological situations with increased myelin membrane biogenesis. We suggest that Rab3A may regulate SNAP‐29‐mediated membrane fusion during myelination. © 2009 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19170188</pmid><doi>10.1002/jnr.22005</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-4012
ispartof Journal of neuroscience research, 2009-11, Vol.87 (15), p.3465-3479
issn 0360-4012
1097-4547
1097-4547
language eng
recordid cdi_proquest_miscellaneous_883033390
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Animals, Newborn
Binding Sites - physiology
Cell Differentiation - physiology
Cell Line
Cell Membrane - metabolism
Cell Membrane - ultrastructure
Cells, Cultured
Central Nervous System - cytology
Central Nervous System - growth & development
Central Nervous System - metabolism
Charcot-Marie-Tooth Disease - metabolism
Charcot-Marie-Tooth Disease - physiopathology
Charcot-Marie-Tooth neuropathy
Cytoskeletal Proteins - metabolism
Disease Models, Animal
Gene Expression Regulation, Developmental - physiology
GTP-Binding Proteins - metabolism
Guanosine Triphosphate - metabolism
Membrane Fusion - physiology
membrane trafficking
Mice
Mice, Inbred C57BL
Myelin Proteolipid Protein - metabolism
Myelin Sheath - metabolism
Myelin Sheath - ultrastructure
Nerve Fibers, Myelinated - metabolism
Nerve Fibers, Myelinated - ultrastructure
oligodendrocyte
Protein Binding - physiology
Protein Structure, Tertiary - physiology
Protein Transport - physiology
Qb-SNARE Proteins - metabolism
Qc-SNARE Proteins - metabolism
rab GTP-Binding Proteins - metabolism
rab3A
rab3A GTP-Binding Protein - metabolism
Rats
remyelination
Schwann cell
Septins
SNARE proteins
Synaptic Membranes - metabolism
Two-Hybrid System Techniques
title The SNARE protein SNAP-29 interacts with the GTPase Rab3A: Implications for membrane trafficking in myelinating glia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A05%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20SNARE%20protein%20SNAP-29%20interacts%20with%20the%20GTPase%20Rab3A:%20Implications%20for%20membrane%20trafficking%20in%20myelinating%20glia&rft.jtitle=Journal%20of%20neuroscience%20research&rft.au=Schardt,%20Anke&rft.date=2009-11-15&rft.volume=87&rft.issue=15&rft.spage=3465&rft.epage=3479&rft.pages=3465-3479&rft.issn=0360-4012&rft.eissn=1097-4547&rft_id=info:doi/10.1002/jnr.22005&rft_dat=%3Cproquest_cross%3E883033390%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734080861&rft_id=info:pmid/19170188&rfr_iscdi=true