Laplace transform integration of the shallow‐water equations. Part II: Semi‐Lagrangian formulation and orographic resonance

In this article we combine the Laplace transform (LT) scheme with a semi‐Lagrangian advection scheme, and implement it in a shallow‐water model. It is compared to a reference model using the semi‐implicit (SI) scheme, with both Eulerian and Lagrangian advection. We show that the LT scheme is accurat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly journal of the Royal Meteorological Society 2011-04, Vol.137 (656), p.800-809
Hauptverfasser: Clancy, Colm, Lynch, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 809
container_issue 656
container_start_page 800
container_title Quarterly journal of the Royal Meteorological Society
container_volume 137
creator Clancy, Colm
Lynch, Peter
description In this article we combine the Laplace transform (LT) scheme with a semi‐Lagrangian advection scheme, and implement it in a shallow‐water model. It is compared to a reference model using the semi‐implicit (SI) scheme, with both Eulerian and Lagrangian advection. We show that the LT scheme is accurate and computationally competitive with these reference schemes. We also show, both analytically and numerically, that the LT scheme is free from the problem of orographic resonance that is found with semi‐implicit schemes. Copyright © 2011 Royal Meteorological Society
doi_str_mv 10.1002/qj.805
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883031910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>883031910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4505-d8e82b506f215ab2a55da27d874dcb54a9912ec5614f927d6909bac73da7ef093</originalsourceid><addsrcrecordid>eNqN0c1uEzEUBWALgUQo7TN4A7SLSa894_GYXVWVkipSQQWpu9GNx9M4cuzEnijqCh6BZ-yT4DRVd_ysLPl-PrLOJeSIwZgB8NP1YtyAeEFGrJKyaCTcviQjgFIUCkC9Jm9SWgCAkFyOyI8prhxqQ4eIPvUhLqn1g7mLONjgaejpMDc0zdG5sH34-WuLg4nUrDeP8zSmXzAOdDL5SG_M0mYwxfzW31n0dJe2cfsg9B0NMeTZam41jSYFj16bt-RVjy6Zw6fzgHz_dPHt_HMxvb6cnJ9NC10JEEXXmIbPBNQ9ZwJnHIXokMuukVWnZ6JCpRg3WtSs6lW-rxWoGWpZdihND6o8IB_2uasY1huThnZpkzbOoTdhk9qmKaFkikGWx3-VTMrcpSgr9l-US8Hr6t8UmFSyhLrO9P2e6hhSiqZvV9EuMd5n1O423K4Xbd5whu-eMjFpdH3uXdv0rHn-YS6vye5k77bWmfs_pLVfr3aZvwG1TLUc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017973066</pqid></control><display><type>article</type><title>Laplace transform integration of the shallow‐water equations. Part II: Semi‐Lagrangian formulation and orographic resonance</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Clancy, Colm ; Lynch, Peter</creator><creatorcontrib>Clancy, Colm ; Lynch, Peter</creatorcontrib><description>In this article we combine the Laplace transform (LT) scheme with a semi‐Lagrangian advection scheme, and implement it in a shallow‐water model. It is compared to a reference model using the semi‐implicit (SI) scheme, with both Eulerian and Lagrangian advection. We show that the LT scheme is accurate and computationally competitive with these reference schemes. We also show, both analytically and numerically, that the LT scheme is free from the problem of orographic resonance that is found with semi‐implicit schemes. Copyright © 2011 Royal Meteorological Society</description><identifier>ISSN: 0035-9009</identifier><identifier>ISSN: 1477-870X</identifier><identifier>EISSN: 1477-870X</identifier><identifier>DOI: 10.1002/qj.805</identifier><identifier>CODEN: QJRMAM</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Advection ; Computation ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; filtering ; Laplace transforms ; Mathematical analysis ; Mathematical models ; Meteorology ; numerical weather prediction ; Physics of the high neutral atmosphere ; time integration</subject><ispartof>Quarterly journal of the Royal Meteorological Society, 2011-04, Vol.137 (656), p.800-809</ispartof><rights>Copyright © 2011 Royal Meteorological Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4505-d8e82b506f215ab2a55da27d874dcb54a9912ec5614f927d6909bac73da7ef093</citedby><cites>FETCH-LOGICAL-c4505-d8e82b506f215ab2a55da27d874dcb54a9912ec5614f927d6909bac73da7ef093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqj.805$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqj.805$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24134508$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Clancy, Colm</creatorcontrib><creatorcontrib>Lynch, Peter</creatorcontrib><title>Laplace transform integration of the shallow‐water equations. Part II: Semi‐Lagrangian formulation and orographic resonance</title><title>Quarterly journal of the Royal Meteorological Society</title><description>In this article we combine the Laplace transform (LT) scheme with a semi‐Lagrangian advection scheme, and implement it in a shallow‐water model. It is compared to a reference model using the semi‐implicit (SI) scheme, with both Eulerian and Lagrangian advection. We show that the LT scheme is accurate and computationally competitive with these reference schemes. We also show, both analytically and numerically, that the LT scheme is free from the problem of orographic resonance that is found with semi‐implicit schemes. Copyright © 2011 Royal Meteorological Society</description><subject>Advection</subject><subject>Computation</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>filtering</subject><subject>Laplace transforms</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>numerical weather prediction</subject><subject>Physics of the high neutral atmosphere</subject><subject>time integration</subject><issn>0035-9009</issn><issn>1477-870X</issn><issn>1477-870X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqN0c1uEzEUBWALgUQo7TN4A7SLSa894_GYXVWVkipSQQWpu9GNx9M4cuzEnijqCh6BZ-yT4DRVd_ysLPl-PrLOJeSIwZgB8NP1YtyAeEFGrJKyaCTcviQjgFIUCkC9Jm9SWgCAkFyOyI8prhxqQ4eIPvUhLqn1g7mLONjgaejpMDc0zdG5sH34-WuLg4nUrDeP8zSmXzAOdDL5SG_M0mYwxfzW31n0dJe2cfsg9B0NMeTZam41jSYFj16bt-RVjy6Zw6fzgHz_dPHt_HMxvb6cnJ9NC10JEEXXmIbPBNQ9ZwJnHIXokMuukVWnZ6JCpRg3WtSs6lW-rxWoGWpZdihND6o8IB_2uasY1huThnZpkzbOoTdhk9qmKaFkikGWx3-VTMrcpSgr9l-US8Hr6t8UmFSyhLrO9P2e6hhSiqZvV9EuMd5n1O423K4Xbd5whu-eMjFpdH3uXdv0rHn-YS6vye5k77bWmfs_pLVfr3aZvwG1TLUc</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Clancy, Colm</creator><creator>Lynch, Peter</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201104</creationdate><title>Laplace transform integration of the shallow‐water equations. Part II: Semi‐Lagrangian formulation and orographic resonance</title><author>Clancy, Colm ; Lynch, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4505-d8e82b506f215ab2a55da27d874dcb54a9912ec5614f927d6909bac73da7ef093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Advection</topic><topic>Computation</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>filtering</topic><topic>Laplace transforms</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>numerical weather prediction</topic><topic>Physics of the high neutral atmosphere</topic><topic>time integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clancy, Colm</creatorcontrib><creatorcontrib>Lynch, Peter</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clancy, Colm</au><au>Lynch, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laplace transform integration of the shallow‐water equations. Part II: Semi‐Lagrangian formulation and orographic resonance</atitle><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle><date>2011-04</date><risdate>2011</risdate><volume>137</volume><issue>656</issue><spage>800</spage><epage>809</epage><pages>800-809</pages><issn>0035-9009</issn><issn>1477-870X</issn><eissn>1477-870X</eissn><coden>QJRMAM</coden><abstract>In this article we combine the Laplace transform (LT) scheme with a semi‐Lagrangian advection scheme, and implement it in a shallow‐water model. It is compared to a reference model using the semi‐implicit (SI) scheme, with both Eulerian and Lagrangian advection. We show that the LT scheme is accurate and computationally competitive with these reference schemes. We also show, both analytically and numerically, that the LT scheme is free from the problem of orographic resonance that is found with semi‐implicit schemes. Copyright © 2011 Royal Meteorological Society</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/qj.805</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-9009
ispartof Quarterly journal of the Royal Meteorological Society, 2011-04, Vol.137 (656), p.800-809
issn 0035-9009
1477-870X
1477-870X
language eng
recordid cdi_proquest_miscellaneous_883031910
source Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals
subjects Advection
Computation
Earth, ocean, space
Exact sciences and technology
External geophysics
filtering
Laplace transforms
Mathematical analysis
Mathematical models
Meteorology
numerical weather prediction
Physics of the high neutral atmosphere
time integration
title Laplace transform integration of the shallow‐water equations. Part II: Semi‐Lagrangian formulation and orographic resonance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A14%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laplace%20transform%20integration%20of%20the%20shallow%E2%80%90water%20equations.%20Part%20II:%20Semi%E2%80%90Lagrangian%20formulation%20and%20orographic%20resonance&rft.jtitle=Quarterly%20journal%20of%20the%20Royal%20Meteorological%20Society&rft.au=Clancy,%20Colm&rft.date=2011-04&rft.volume=137&rft.issue=656&rft.spage=800&rft.epage=809&rft.pages=800-809&rft.issn=0035-9009&rft.eissn=1477-870X&rft.coden=QJRMAM&rft_id=info:doi/10.1002/qj.805&rft_dat=%3Cproquest_cross%3E883031910%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1017973066&rft_id=info:pmid/&rfr_iscdi=true