Laplace transform integration of the shallow‐water equations. Part II: Semi‐Lagrangian formulation and orographic resonance
In this article we combine the Laplace transform (LT) scheme with a semi‐Lagrangian advection scheme, and implement it in a shallow‐water model. It is compared to a reference model using the semi‐implicit (SI) scheme, with both Eulerian and Lagrangian advection. We show that the LT scheme is accurat...
Gespeichert in:
Veröffentlicht in: | Quarterly journal of the Royal Meteorological Society 2011-04, Vol.137 (656), p.800-809 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 809 |
---|---|
container_issue | 656 |
container_start_page | 800 |
container_title | Quarterly journal of the Royal Meteorological Society |
container_volume | 137 |
creator | Clancy, Colm Lynch, Peter |
description | In this article we combine the Laplace transform (LT) scheme with a semi‐Lagrangian advection scheme, and implement it in a shallow‐water model. It is compared to a reference model using the semi‐implicit (SI) scheme, with both Eulerian and Lagrangian advection. We show that the LT scheme is accurate and computationally competitive with these reference schemes. We also show, both analytically and numerically, that the LT scheme is free from the problem of orographic resonance that is found with semi‐implicit schemes. Copyright © 2011 Royal Meteorological Society |
doi_str_mv | 10.1002/qj.805 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883031910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>883031910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4505-d8e82b506f215ab2a55da27d874dcb54a9912ec5614f927d6909bac73da7ef093</originalsourceid><addsrcrecordid>eNqN0c1uEzEUBWALgUQo7TN4A7SLSa894_GYXVWVkipSQQWpu9GNx9M4cuzEnijqCh6BZ-yT4DRVd_ysLPl-PrLOJeSIwZgB8NP1YtyAeEFGrJKyaCTcviQjgFIUCkC9Jm9SWgCAkFyOyI8prhxqQ4eIPvUhLqn1g7mLONjgaejpMDc0zdG5sH34-WuLg4nUrDeP8zSmXzAOdDL5SG_M0mYwxfzW31n0dJe2cfsg9B0NMeTZam41jSYFj16bt-RVjy6Zw6fzgHz_dPHt_HMxvb6cnJ9NC10JEEXXmIbPBNQ9ZwJnHIXokMuukVWnZ6JCpRg3WtSs6lW-rxWoGWpZdihND6o8IB_2uasY1huThnZpkzbOoTdhk9qmKaFkikGWx3-VTMrcpSgr9l-US8Hr6t8UmFSyhLrO9P2e6hhSiqZvV9EuMd5n1O423K4Xbd5whu-eMjFpdH3uXdv0rHn-YS6vye5k77bWmfs_pLVfr3aZvwG1TLUc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017973066</pqid></control><display><type>article</type><title>Laplace transform integration of the shallow‐water equations. Part II: Semi‐Lagrangian formulation and orographic resonance</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Clancy, Colm ; Lynch, Peter</creator><creatorcontrib>Clancy, Colm ; Lynch, Peter</creatorcontrib><description>In this article we combine the Laplace transform (LT) scheme with a semi‐Lagrangian advection scheme, and implement it in a shallow‐water model. It is compared to a reference model using the semi‐implicit (SI) scheme, with both Eulerian and Lagrangian advection. We show that the LT scheme is accurate and computationally competitive with these reference schemes. We also show, both analytically and numerically, that the LT scheme is free from the problem of orographic resonance that is found with semi‐implicit schemes. Copyright © 2011 Royal Meteorological Society</description><identifier>ISSN: 0035-9009</identifier><identifier>ISSN: 1477-870X</identifier><identifier>EISSN: 1477-870X</identifier><identifier>DOI: 10.1002/qj.805</identifier><identifier>CODEN: QJRMAM</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Advection ; Computation ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; filtering ; Laplace transforms ; Mathematical analysis ; Mathematical models ; Meteorology ; numerical weather prediction ; Physics of the high neutral atmosphere ; time integration</subject><ispartof>Quarterly journal of the Royal Meteorological Society, 2011-04, Vol.137 (656), p.800-809</ispartof><rights>Copyright © 2011 Royal Meteorological Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4505-d8e82b506f215ab2a55da27d874dcb54a9912ec5614f927d6909bac73da7ef093</citedby><cites>FETCH-LOGICAL-c4505-d8e82b506f215ab2a55da27d874dcb54a9912ec5614f927d6909bac73da7ef093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqj.805$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqj.805$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24134508$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Clancy, Colm</creatorcontrib><creatorcontrib>Lynch, Peter</creatorcontrib><title>Laplace transform integration of the shallow‐water equations. Part II: Semi‐Lagrangian formulation and orographic resonance</title><title>Quarterly journal of the Royal Meteorological Society</title><description>In this article we combine the Laplace transform (LT) scheme with a semi‐Lagrangian advection scheme, and implement it in a shallow‐water model. It is compared to a reference model using the semi‐implicit (SI) scheme, with both Eulerian and Lagrangian advection. We show that the LT scheme is accurate and computationally competitive with these reference schemes. We also show, both analytically and numerically, that the LT scheme is free from the problem of orographic resonance that is found with semi‐implicit schemes. Copyright © 2011 Royal Meteorological Society</description><subject>Advection</subject><subject>Computation</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>filtering</subject><subject>Laplace transforms</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>numerical weather prediction</subject><subject>Physics of the high neutral atmosphere</subject><subject>time integration</subject><issn>0035-9009</issn><issn>1477-870X</issn><issn>1477-870X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqN0c1uEzEUBWALgUQo7TN4A7SLSa894_GYXVWVkipSQQWpu9GNx9M4cuzEnijqCh6BZ-yT4DRVd_ysLPl-PrLOJeSIwZgB8NP1YtyAeEFGrJKyaCTcviQjgFIUCkC9Jm9SWgCAkFyOyI8prhxqQ4eIPvUhLqn1g7mLONjgaejpMDc0zdG5sH34-WuLg4nUrDeP8zSmXzAOdDL5SG_M0mYwxfzW31n0dJe2cfsg9B0NMeTZam41jSYFj16bt-RVjy6Zw6fzgHz_dPHt_HMxvb6cnJ9NC10JEEXXmIbPBNQ9ZwJnHIXokMuukVWnZ6JCpRg3WtSs6lW-rxWoGWpZdihND6o8IB_2uasY1huThnZpkzbOoTdhk9qmKaFkikGWx3-VTMrcpSgr9l-US8Hr6t8UmFSyhLrO9P2e6hhSiqZvV9EuMd5n1O423K4Xbd5whu-eMjFpdH3uXdv0rHn-YS6vye5k77bWmfs_pLVfr3aZvwG1TLUc</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Clancy, Colm</creator><creator>Lynch, Peter</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201104</creationdate><title>Laplace transform integration of the shallow‐water equations. Part II: Semi‐Lagrangian formulation and orographic resonance</title><author>Clancy, Colm ; Lynch, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4505-d8e82b506f215ab2a55da27d874dcb54a9912ec5614f927d6909bac73da7ef093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Advection</topic><topic>Computation</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>filtering</topic><topic>Laplace transforms</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>numerical weather prediction</topic><topic>Physics of the high neutral atmosphere</topic><topic>time integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clancy, Colm</creatorcontrib><creatorcontrib>Lynch, Peter</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clancy, Colm</au><au>Lynch, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laplace transform integration of the shallow‐water equations. Part II: Semi‐Lagrangian formulation and orographic resonance</atitle><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle><date>2011-04</date><risdate>2011</risdate><volume>137</volume><issue>656</issue><spage>800</spage><epage>809</epage><pages>800-809</pages><issn>0035-9009</issn><issn>1477-870X</issn><eissn>1477-870X</eissn><coden>QJRMAM</coden><abstract>In this article we combine the Laplace transform (LT) scheme with a semi‐Lagrangian advection scheme, and implement it in a shallow‐water model. It is compared to a reference model using the semi‐implicit (SI) scheme, with both Eulerian and Lagrangian advection. We show that the LT scheme is accurate and computationally competitive with these reference schemes. We also show, both analytically and numerically, that the LT scheme is free from the problem of orographic resonance that is found with semi‐implicit schemes. Copyright © 2011 Royal Meteorological Society</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/qj.805</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-9009 |
ispartof | Quarterly journal of the Royal Meteorological Society, 2011-04, Vol.137 (656), p.800-809 |
issn | 0035-9009 1477-870X 1477-870X |
language | eng |
recordid | cdi_proquest_miscellaneous_883031910 |
source | Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Advection Computation Earth, ocean, space Exact sciences and technology External geophysics filtering Laplace transforms Mathematical analysis Mathematical models Meteorology numerical weather prediction Physics of the high neutral atmosphere time integration |
title | Laplace transform integration of the shallow‐water equations. Part II: Semi‐Lagrangian formulation and orographic resonance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A14%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laplace%20transform%20integration%20of%20the%20shallow%E2%80%90water%20equations.%20Part%20II:%20Semi%E2%80%90Lagrangian%20formulation%20and%20orographic%20resonance&rft.jtitle=Quarterly%20journal%20of%20the%20Royal%20Meteorological%20Society&rft.au=Clancy,%20Colm&rft.date=2011-04&rft.volume=137&rft.issue=656&rft.spage=800&rft.epage=809&rft.pages=800-809&rft.issn=0035-9009&rft.eissn=1477-870X&rft.coden=QJRMAM&rft_id=info:doi/10.1002/qj.805&rft_dat=%3Cproquest_cross%3E883031910%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1017973066&rft_id=info:pmid/&rfr_iscdi=true |