The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3
The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a coupled general circulation model (CM3) for the atmosphere, oceans, land, and sea ice. The goal of CM3 is to address emerging issues in climate change, including aerosol–cloud interactions, chemistry–climate interactions, and coupling...
Gespeichert in:
Veröffentlicht in: | Journal of climate 2011-07, Vol.24 (13), p.3484-3519 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3519 |
---|---|
container_issue | 13 |
container_start_page | 3484 |
container_title | Journal of climate |
container_volume | 24 |
creator | Donner, Leo J. Wyman, Bruce L. Hemler, Richard S. Horowitz, Larry W. Ming, Yi Zhao, Ming Golaz, Jean-Christophe Ginoux, Paul Lin, S.-J. Schwarzkopf, M. Daniel Austin, John Alaka, Ghassan Cooke, William F. Delworth, Thomas L. Freidenreich, Stuart M. Gordon, C. T. Griffies, Stephen M. Held, Isaac M. Hurlin, William J. Klein, Stephen A. Knutson, Thomas R. Langenhorst, Amy R. Lee, Hyun-Chul Lin, Yanluan Magi, Brian I. Malyshev, Sergey L. Milly, P. C. D. Naik, Vaishali Nath, Mary J. Pincus, Robert Ploshay, Jeffrey J. Ramaswamy, V. Seman, Charles J. Shevliakova, Elena Sirutis, Joseph J. Stern, William F. Stouffer, Ronald J. Wilson, R. John Winton, Michael Wittenberg, Andrew T. Zeng, Fanrong |
description | The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a coupled general circulation model (CM3) for the atmosphere, oceans, land, and sea ice. The goal of CM3 is to address emerging issues in climate change, including aerosol–cloud interactions, chemistry–climate interactions, and coupling between the troposphere and stratosphere. The model is also designed to serve as the physical system component of earth system models and models for decadal prediction in the near-term future—for example, through improved simulations in tropical land precipitation relative to earlier-generation GFDL models. This paper describes the dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component (AM3) of this model. Relative to GFDL AM2, AM3 includes new treatments of deep and shallow cumulus convection, cloud droplet activation by aerosols, subgrid variability of stratiform vertical velocities for droplet activation, and atmospheric chemistry driven by emissions with advective, convective, and turbulent transport. AM3 employs a cubed-sphere implementation of a finite-volume dynamical core and is coupled to LM3, a new land model with ecosystem dynamics and hydrology. Its horizontal resolution is approximately 200 km, and its vertical resolution ranges approximately from 70 m near the earth’s surface to 1 to 1.5 km near the tropopause and 3 to 4 km in much of the stratosphere. Most basic circulation features in AM3 are simulated as realistically, or more so, as in AM2. In particular, dry biases have been reduced over South America. In coupledmode, the simulation of Arctic sea ice concentration has improved. AM3 aerosol optical depths, scattering properties, and surface clear-sky downward shortwave radiation are more realistic than in AM2. The simulation of marine stratocumulus decks remains problematic, as in AM2. The most intense 0.2% of precipitation rates occur less frequently in AM3 than observed. The last two decades of the twentieth century warm in CM3 by 0.32°C relative to 1881–1920. The Climate Research Unit (CRU) and Goddard Institute for Space Studies analyses of observations show warming of 0.56° and 0.52°C, respectively, over this period. CM3 includes anthropogenic cooling by aerosol–cloud interactions, and its warming by the late twentieth century is somewhat less realistic than in CM2.1, which warmed 0.66°C but did not include aerosol–cloud interactions. The improved simulation of the direct aerosol effec |
doi_str_mv | 10.1175/2011jcli3955.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_883030531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26191095</jstor_id><sourcerecordid>26191095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-56124d976f62fe310990f7ba6ed69863f5194d5e260244c966cb1ee6bead7bb3</originalsourceid><addsrcrecordid>eNp1kUtv1DAUhSNEJYbClh2SBUJsmqnfj-U0pUOrGVGJ2UeO42g8SuJgJ4vhp_BrcWYKSEhdWffez-dc-2TZOwSXCAl2jSFCB9M6ohhbohfZAjEMc0gpfpktoFQ0l4KxV9nrGA8QIswhXGS_dnsLbo-97pzRLSh8sFfgcX-Mp_JRB93Z0Qb3U4_O9_EK6L4GNzqNwXfXTe2pDYp9As3MxdGZCHwDxqS7Gjsfh31qm6TcDb63_QhWW_IHWN_dbsC69dXJehpaW4Otr22qtuRNdtHoNtq3T-dltrv7siu-5ptv6_titckNw2rMGUeY1krwhuPGEgSVgo2oNLc1V5KThiFFa2bTezGlRnFuKmQtr6yuRVWRy-zzWXYI_sdk41h2Lhrbtrq3foqllAQSyAhK5If_yIOfQp92K6XgUkohRYI-PgdhiSiRWAmVqOWZMsHHGGxTDsF1OhxLBMs5zXJO86HY3M9plrP3pydZHVMyTdC9cfHvLUwJIYLM9u_P3CGOPvybc6TSzzDyG8oDp_E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814382979</pqid></control><display><type>article</type><title>The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Donner, Leo J. ; Wyman, Bruce L. ; Hemler, Richard S. ; Horowitz, Larry W. ; Ming, Yi ; Zhao, Ming ; Golaz, Jean-Christophe ; Ginoux, Paul ; Lin, S.-J. ; Schwarzkopf, M. Daniel ; Austin, John ; Alaka, Ghassan ; Cooke, William F. ; Delworth, Thomas L. ; Freidenreich, Stuart M. ; Gordon, C. T. ; Griffies, Stephen M. ; Held, Isaac M. ; Hurlin, William J. ; Klein, Stephen A. ; Knutson, Thomas R. ; Langenhorst, Amy R. ; Lee, Hyun-Chul ; Lin, Yanluan ; Magi, Brian I. ; Malyshev, Sergey L. ; Milly, P. C. D. ; Naik, Vaishali ; Nath, Mary J. ; Pincus, Robert ; Ploshay, Jeffrey J. ; Ramaswamy, V. ; Seman, Charles J. ; Shevliakova, Elena ; Sirutis, Joseph J. ; Stern, William F. ; Stouffer, Ronald J. ; Wilson, R. John ; Winton, Michael ; Wittenberg, Andrew T. ; Zeng, Fanrong</creator><creatorcontrib>Donner, Leo J. ; Wyman, Bruce L. ; Hemler, Richard S. ; Horowitz, Larry W. ; Ming, Yi ; Zhao, Ming ; Golaz, Jean-Christophe ; Ginoux, Paul ; Lin, S.-J. ; Schwarzkopf, M. Daniel ; Austin, John ; Alaka, Ghassan ; Cooke, William F. ; Delworth, Thomas L. ; Freidenreich, Stuart M. ; Gordon, C. T. ; Griffies, Stephen M. ; Held, Isaac M. ; Hurlin, William J. ; Klein, Stephen A. ; Knutson, Thomas R. ; Langenhorst, Amy R. ; Lee, Hyun-Chul ; Lin, Yanluan ; Magi, Brian I. ; Malyshev, Sergey L. ; Milly, P. C. D. ; Naik, Vaishali ; Nath, Mary J. ; Pincus, Robert ; Ploshay, Jeffrey J. ; Ramaswamy, V. ; Seman, Charles J. ; Shevliakova, Elena ; Sirutis, Joseph J. ; Stern, William F. ; Stouffer, Ronald J. ; Wilson, R. John ; Winton, Michael ; Wittenberg, Andrew T. ; Zeng, Fanrong</creatorcontrib><description>The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a coupled general circulation model (CM3) for the atmosphere, oceans, land, and sea ice. The goal of CM3 is to address emerging issues in climate change, including aerosol–cloud interactions, chemistry–climate interactions, and coupling between the troposphere and stratosphere. The model is also designed to serve as the physical system component of earth system models and models for decadal prediction in the near-term future—for example, through improved simulations in tropical land precipitation relative to earlier-generation GFDL models. This paper describes the dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component (AM3) of this model. Relative to GFDL AM2, AM3 includes new treatments of deep and shallow cumulus convection, cloud droplet activation by aerosols, subgrid variability of stratiform vertical velocities for droplet activation, and atmospheric chemistry driven by emissions with advective, convective, and turbulent transport. AM3 employs a cubed-sphere implementation of a finite-volume dynamical core and is coupled to LM3, a new land model with ecosystem dynamics and hydrology. Its horizontal resolution is approximately 200 km, and its vertical resolution ranges approximately from 70 m near the earth’s surface to 1 to 1.5 km near the tropopause and 3 to 4 km in much of the stratosphere. Most basic circulation features in AM3 are simulated as realistically, or more so, as in AM2. In particular, dry biases have been reduced over South America. In coupledmode, the simulation of Arctic sea ice concentration has improved. AM3 aerosol optical depths, scattering properties, and surface clear-sky downward shortwave radiation are more realistic than in AM2. The simulation of marine stratocumulus decks remains problematic, as in AM2. The most intense 0.2% of precipitation rates occur less frequently in AM3 than observed. The last two decades of the twentieth century warm in CM3 by 0.32°C relative to 1881–1920. The Climate Research Unit (CRU) and Goddard Institute for Space Studies analyses of observations show warming of 0.56° and 0.52°C, respectively, over this period. CM3 includes anthropogenic cooling by aerosol–cloud interactions, and its warming by the late twentieth century is somewhat less realistic than in CM2.1, which warmed 0.66°C but did not include aerosol–cloud interactions. The improved simulation of the direct aerosol effect (apparent in surface clear-sky downward radiation) in CM3 evidently acts in concert with its simulation of cloud–aerosol interactions to limit greenhouse gas warming.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/2011jcli3955.1</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Aerosol concentrations ; Aerosol effects ; Aerosol optical depth ; Aerosol-cloud interactions ; Aerosols ; Algorithms ; Anthropogenic factors ; Arctic sea ice ; Atmospheric chemistry ; Atmospheric circulation ; Atmospheric models ; Biogeochemistry ; Clear sky ; Climate change ; Climate models ; Cloud droplets ; Clouds ; Convection ; Convection clouds ; Coupled modes ; Cumulus clouds ; Droplets ; Earth surface ; Earth, ocean, space ; Ecosystem dynamics ; Efficiency ; Emissions ; Exact sciences and technology ; External geophysics ; Fluid dynamics ; Fluid flow ; General circulation models ; Geophysical fluids ; Greenhouse effect ; Greenhouse gases ; Hydrodynamics ; Hydrology ; Marine ; Meteorology ; Modelling ; Oceans ; Optical properties ; Ozone ; Parameterization ; Precipitation ; Radiation ; Resolution ; Science ; Sea ice ; Sea ice concentrations ; Short wave radiation ; Simulation ; Sky ; SPECIAL GFDL's Coupled Model-3 (CM3) COLLECTION ; Stratosphere ; Tropopause ; Troposphere ; Vertical air currents ; Vertical velocities</subject><ispartof>Journal of climate, 2011-07, Vol.24 (13), p.3484-3519</ispartof><rights>2011 American Meteorological Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society 2011</rights><rights>Copyright American Meteorological Society Jul 1, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-56124d976f62fe310990f7ba6ed69863f5194d5e260244c966cb1ee6bead7bb3</citedby><cites>FETCH-LOGICAL-c529t-56124d976f62fe310990f7ba6ed69863f5194d5e260244c966cb1ee6bead7bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26191095$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26191095$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24333737$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Donner, Leo J.</creatorcontrib><creatorcontrib>Wyman, Bruce L.</creatorcontrib><creatorcontrib>Hemler, Richard S.</creatorcontrib><creatorcontrib>Horowitz, Larry W.</creatorcontrib><creatorcontrib>Ming, Yi</creatorcontrib><creatorcontrib>Zhao, Ming</creatorcontrib><creatorcontrib>Golaz, Jean-Christophe</creatorcontrib><creatorcontrib>Ginoux, Paul</creatorcontrib><creatorcontrib>Lin, S.-J.</creatorcontrib><creatorcontrib>Schwarzkopf, M. Daniel</creatorcontrib><creatorcontrib>Austin, John</creatorcontrib><creatorcontrib>Alaka, Ghassan</creatorcontrib><creatorcontrib>Cooke, William F.</creatorcontrib><creatorcontrib>Delworth, Thomas L.</creatorcontrib><creatorcontrib>Freidenreich, Stuart M.</creatorcontrib><creatorcontrib>Gordon, C. T.</creatorcontrib><creatorcontrib>Griffies, Stephen M.</creatorcontrib><creatorcontrib>Held, Isaac M.</creatorcontrib><creatorcontrib>Hurlin, William J.</creatorcontrib><creatorcontrib>Klein, Stephen A.</creatorcontrib><creatorcontrib>Knutson, Thomas R.</creatorcontrib><creatorcontrib>Langenhorst, Amy R.</creatorcontrib><creatorcontrib>Lee, Hyun-Chul</creatorcontrib><creatorcontrib>Lin, Yanluan</creatorcontrib><creatorcontrib>Magi, Brian I.</creatorcontrib><creatorcontrib>Malyshev, Sergey L.</creatorcontrib><creatorcontrib>Milly, P. C. D.</creatorcontrib><creatorcontrib>Naik, Vaishali</creatorcontrib><creatorcontrib>Nath, Mary J.</creatorcontrib><creatorcontrib>Pincus, Robert</creatorcontrib><creatorcontrib>Ploshay, Jeffrey J.</creatorcontrib><creatorcontrib>Ramaswamy, V.</creatorcontrib><creatorcontrib>Seman, Charles J.</creatorcontrib><creatorcontrib>Shevliakova, Elena</creatorcontrib><creatorcontrib>Sirutis, Joseph J.</creatorcontrib><creatorcontrib>Stern, William F.</creatorcontrib><creatorcontrib>Stouffer, Ronald J.</creatorcontrib><creatorcontrib>Wilson, R. John</creatorcontrib><creatorcontrib>Winton, Michael</creatorcontrib><creatorcontrib>Wittenberg, Andrew T.</creatorcontrib><creatorcontrib>Zeng, Fanrong</creatorcontrib><title>The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3</title><title>Journal of climate</title><description>The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a coupled general circulation model (CM3) for the atmosphere, oceans, land, and sea ice. The goal of CM3 is to address emerging issues in climate change, including aerosol–cloud interactions, chemistry–climate interactions, and coupling between the troposphere and stratosphere. The model is also designed to serve as the physical system component of earth system models and models for decadal prediction in the near-term future—for example, through improved simulations in tropical land precipitation relative to earlier-generation GFDL models. This paper describes the dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component (AM3) of this model. Relative to GFDL AM2, AM3 includes new treatments of deep and shallow cumulus convection, cloud droplet activation by aerosols, subgrid variability of stratiform vertical velocities for droplet activation, and atmospheric chemistry driven by emissions with advective, convective, and turbulent transport. AM3 employs a cubed-sphere implementation of a finite-volume dynamical core and is coupled to LM3, a new land model with ecosystem dynamics and hydrology. Its horizontal resolution is approximately 200 km, and its vertical resolution ranges approximately from 70 m near the earth’s surface to 1 to 1.5 km near the tropopause and 3 to 4 km in much of the stratosphere. Most basic circulation features in AM3 are simulated as realistically, or more so, as in AM2. In particular, dry biases have been reduced over South America. In coupledmode, the simulation of Arctic sea ice concentration has improved. AM3 aerosol optical depths, scattering properties, and surface clear-sky downward shortwave radiation are more realistic than in AM2. The simulation of marine stratocumulus decks remains problematic, as in AM2. The most intense 0.2% of precipitation rates occur less frequently in AM3 than observed. The last two decades of the twentieth century warm in CM3 by 0.32°C relative to 1881–1920. The Climate Research Unit (CRU) and Goddard Institute for Space Studies analyses of observations show warming of 0.56° and 0.52°C, respectively, over this period. CM3 includes anthropogenic cooling by aerosol–cloud interactions, and its warming by the late twentieth century is somewhat less realistic than in CM2.1, which warmed 0.66°C but did not include aerosol–cloud interactions. The improved simulation of the direct aerosol effect (apparent in surface clear-sky downward radiation) in CM3 evidently acts in concert with its simulation of cloud–aerosol interactions to limit greenhouse gas warming.</description><subject>Aerosol concentrations</subject><subject>Aerosol effects</subject><subject>Aerosol optical depth</subject><subject>Aerosol-cloud interactions</subject><subject>Aerosols</subject><subject>Algorithms</subject><subject>Anthropogenic factors</subject><subject>Arctic sea ice</subject><subject>Atmospheric chemistry</subject><subject>Atmospheric circulation</subject><subject>Atmospheric models</subject><subject>Biogeochemistry</subject><subject>Clear sky</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Cloud droplets</subject><subject>Clouds</subject><subject>Convection</subject><subject>Convection clouds</subject><subject>Coupled modes</subject><subject>Cumulus clouds</subject><subject>Droplets</subject><subject>Earth surface</subject><subject>Earth, ocean, space</subject><subject>Ecosystem dynamics</subject><subject>Efficiency</subject><subject>Emissions</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>General circulation models</subject><subject>Geophysical fluids</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Hydrodynamics</subject><subject>Hydrology</subject><subject>Marine</subject><subject>Meteorology</subject><subject>Modelling</subject><subject>Oceans</subject><subject>Optical properties</subject><subject>Ozone</subject><subject>Parameterization</subject><subject>Precipitation</subject><subject>Radiation</subject><subject>Resolution</subject><subject>Science</subject><subject>Sea ice</subject><subject>Sea ice concentrations</subject><subject>Short wave radiation</subject><subject>Simulation</subject><subject>Sky</subject><subject>SPECIAL GFDL's Coupled Model-3 (CM3) COLLECTION</subject><subject>Stratosphere</subject><subject>Tropopause</subject><subject>Troposphere</subject><subject>Vertical air currents</subject><subject>Vertical velocities</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kUtv1DAUhSNEJYbClh2SBUJsmqnfj-U0pUOrGVGJ2UeO42g8SuJgJ4vhp_BrcWYKSEhdWffez-dc-2TZOwSXCAl2jSFCB9M6ohhbohfZAjEMc0gpfpktoFQ0l4KxV9nrGA8QIswhXGS_dnsLbo-97pzRLSh8sFfgcX-Mp_JRB93Z0Qb3U4_O9_EK6L4GNzqNwXfXTe2pDYp9As3MxdGZCHwDxqS7Gjsfh31qm6TcDb63_QhWW_IHWN_dbsC69dXJehpaW4Otr22qtuRNdtHoNtq3T-dltrv7siu-5ptv6_titckNw2rMGUeY1krwhuPGEgSVgo2oNLc1V5KThiFFa2bTezGlRnFuKmQtr6yuRVWRy-zzWXYI_sdk41h2Lhrbtrq3foqllAQSyAhK5If_yIOfQp92K6XgUkohRYI-PgdhiSiRWAmVqOWZMsHHGGxTDsF1OhxLBMs5zXJO86HY3M9plrP3pydZHVMyTdC9cfHvLUwJIYLM9u_P3CGOPvybc6TSzzDyG8oDp_E</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Donner, Leo J.</creator><creator>Wyman, Bruce L.</creator><creator>Hemler, Richard S.</creator><creator>Horowitz, Larry W.</creator><creator>Ming, Yi</creator><creator>Zhao, Ming</creator><creator>Golaz, Jean-Christophe</creator><creator>Ginoux, Paul</creator><creator>Lin, S.-J.</creator><creator>Schwarzkopf, M. Daniel</creator><creator>Austin, John</creator><creator>Alaka, Ghassan</creator><creator>Cooke, William F.</creator><creator>Delworth, Thomas L.</creator><creator>Freidenreich, Stuart M.</creator><creator>Gordon, C. T.</creator><creator>Griffies, Stephen M.</creator><creator>Held, Isaac M.</creator><creator>Hurlin, William J.</creator><creator>Klein, Stephen A.</creator><creator>Knutson, Thomas R.</creator><creator>Langenhorst, Amy R.</creator><creator>Lee, Hyun-Chul</creator><creator>Lin, Yanluan</creator><creator>Magi, Brian I.</creator><creator>Malyshev, Sergey L.</creator><creator>Milly, P. C. D.</creator><creator>Naik, Vaishali</creator><creator>Nath, Mary J.</creator><creator>Pincus, Robert</creator><creator>Ploshay, Jeffrey J.</creator><creator>Ramaswamy, V.</creator><creator>Seman, Charles J.</creator><creator>Shevliakova, Elena</creator><creator>Sirutis, Joseph J.</creator><creator>Stern, William F.</creator><creator>Stouffer, Ronald J.</creator><creator>Wilson, R. John</creator><creator>Winton, Michael</creator><creator>Wittenberg, Andrew T.</creator><creator>Zeng, Fanrong</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>7ST</scope><scope>7TN</scope><scope>7U6</scope></search><sort><creationdate>20110701</creationdate><title>The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3</title><author>Donner, Leo J. ; Wyman, Bruce L. ; Hemler, Richard S. ; Horowitz, Larry W. ; Ming, Yi ; Zhao, Ming ; Golaz, Jean-Christophe ; Ginoux, Paul ; Lin, S.-J. ; Schwarzkopf, M. Daniel ; Austin, John ; Alaka, Ghassan ; Cooke, William F. ; Delworth, Thomas L. ; Freidenreich, Stuart M. ; Gordon, C. T. ; Griffies, Stephen M. ; Held, Isaac M. ; Hurlin, William J. ; Klein, Stephen A. ; Knutson, Thomas R. ; Langenhorst, Amy R. ; Lee, Hyun-Chul ; Lin, Yanluan ; Magi, Brian I. ; Malyshev, Sergey L. ; Milly, P. C. D. ; Naik, Vaishali ; Nath, Mary J. ; Pincus, Robert ; Ploshay, Jeffrey J. ; Ramaswamy, V. ; Seman, Charles J. ; Shevliakova, Elena ; Sirutis, Joseph J. ; Stern, William F. ; Stouffer, Ronald J. ; Wilson, R. John ; Winton, Michael ; Wittenberg, Andrew T. ; Zeng, Fanrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-56124d976f62fe310990f7ba6ed69863f5194d5e260244c966cb1ee6bead7bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aerosol concentrations</topic><topic>Aerosol effects</topic><topic>Aerosol optical depth</topic><topic>Aerosol-cloud interactions</topic><topic>Aerosols</topic><topic>Algorithms</topic><topic>Anthropogenic factors</topic><topic>Arctic sea ice</topic><topic>Atmospheric chemistry</topic><topic>Atmospheric circulation</topic><topic>Atmospheric models</topic><topic>Biogeochemistry</topic><topic>Clear sky</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Cloud droplets</topic><topic>Clouds</topic><topic>Convection</topic><topic>Convection clouds</topic><topic>Coupled modes</topic><topic>Cumulus clouds</topic><topic>Droplets</topic><topic>Earth surface</topic><topic>Earth, ocean, space</topic><topic>Ecosystem dynamics</topic><topic>Efficiency</topic><topic>Emissions</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>General circulation models</topic><topic>Geophysical fluids</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Hydrodynamics</topic><topic>Hydrology</topic><topic>Marine</topic><topic>Meteorology</topic><topic>Modelling</topic><topic>Oceans</topic><topic>Optical properties</topic><topic>Ozone</topic><topic>Parameterization</topic><topic>Precipitation</topic><topic>Radiation</topic><topic>Resolution</topic><topic>Science</topic><topic>Sea ice</topic><topic>Sea ice concentrations</topic><topic>Short wave radiation</topic><topic>Simulation</topic><topic>Sky</topic><topic>SPECIAL GFDL's Coupled Model-3 (CM3) COLLECTION</topic><topic>Stratosphere</topic><topic>Tropopause</topic><topic>Troposphere</topic><topic>Vertical air currents</topic><topic>Vertical velocities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Donner, Leo J.</creatorcontrib><creatorcontrib>Wyman, Bruce L.</creatorcontrib><creatorcontrib>Hemler, Richard S.</creatorcontrib><creatorcontrib>Horowitz, Larry W.</creatorcontrib><creatorcontrib>Ming, Yi</creatorcontrib><creatorcontrib>Zhao, Ming</creatorcontrib><creatorcontrib>Golaz, Jean-Christophe</creatorcontrib><creatorcontrib>Ginoux, Paul</creatorcontrib><creatorcontrib>Lin, S.-J.</creatorcontrib><creatorcontrib>Schwarzkopf, M. Daniel</creatorcontrib><creatorcontrib>Austin, John</creatorcontrib><creatorcontrib>Alaka, Ghassan</creatorcontrib><creatorcontrib>Cooke, William F.</creatorcontrib><creatorcontrib>Delworth, Thomas L.</creatorcontrib><creatorcontrib>Freidenreich, Stuart M.</creatorcontrib><creatorcontrib>Gordon, C. T.</creatorcontrib><creatorcontrib>Griffies, Stephen M.</creatorcontrib><creatorcontrib>Held, Isaac M.</creatorcontrib><creatorcontrib>Hurlin, William J.</creatorcontrib><creatorcontrib>Klein, Stephen A.</creatorcontrib><creatorcontrib>Knutson, Thomas R.</creatorcontrib><creatorcontrib>Langenhorst, Amy R.</creatorcontrib><creatorcontrib>Lee, Hyun-Chul</creatorcontrib><creatorcontrib>Lin, Yanluan</creatorcontrib><creatorcontrib>Magi, Brian I.</creatorcontrib><creatorcontrib>Malyshev, Sergey L.</creatorcontrib><creatorcontrib>Milly, P. C. D.</creatorcontrib><creatorcontrib>Naik, Vaishali</creatorcontrib><creatorcontrib>Nath, Mary J.</creatorcontrib><creatorcontrib>Pincus, Robert</creatorcontrib><creatorcontrib>Ploshay, Jeffrey J.</creatorcontrib><creatorcontrib>Ramaswamy, V.</creatorcontrib><creatorcontrib>Seman, Charles J.</creatorcontrib><creatorcontrib>Shevliakova, Elena</creatorcontrib><creatorcontrib>Sirutis, Joseph J.</creatorcontrib><creatorcontrib>Stern, William F.</creatorcontrib><creatorcontrib>Stouffer, Ronald J.</creatorcontrib><creatorcontrib>Wilson, R. John</creatorcontrib><creatorcontrib>Winton, Michael</creatorcontrib><creatorcontrib>Wittenberg, Andrew T.</creatorcontrib><creatorcontrib>Zeng, Fanrong</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Donner, Leo J.</au><au>Wyman, Bruce L.</au><au>Hemler, Richard S.</au><au>Horowitz, Larry W.</au><au>Ming, Yi</au><au>Zhao, Ming</au><au>Golaz, Jean-Christophe</au><au>Ginoux, Paul</au><au>Lin, S.-J.</au><au>Schwarzkopf, M. Daniel</au><au>Austin, John</au><au>Alaka, Ghassan</au><au>Cooke, William F.</au><au>Delworth, Thomas L.</au><au>Freidenreich, Stuart M.</au><au>Gordon, C. T.</au><au>Griffies, Stephen M.</au><au>Held, Isaac M.</au><au>Hurlin, William J.</au><au>Klein, Stephen A.</au><au>Knutson, Thomas R.</au><au>Langenhorst, Amy R.</au><au>Lee, Hyun-Chul</au><au>Lin, Yanluan</au><au>Magi, Brian I.</au><au>Malyshev, Sergey L.</au><au>Milly, P. C. D.</au><au>Naik, Vaishali</au><au>Nath, Mary J.</au><au>Pincus, Robert</au><au>Ploshay, Jeffrey J.</au><au>Ramaswamy, V.</au><au>Seman, Charles J.</au><au>Shevliakova, Elena</au><au>Sirutis, Joseph J.</au><au>Stern, William F.</au><au>Stouffer, Ronald J.</au><au>Wilson, R. John</au><au>Winton, Michael</au><au>Wittenberg, Andrew T.</au><au>Zeng, Fanrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3</atitle><jtitle>Journal of climate</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>24</volume><issue>13</issue><spage>3484</spage><epage>3519</epage><pages>3484-3519</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a coupled general circulation model (CM3) for the atmosphere, oceans, land, and sea ice. The goal of CM3 is to address emerging issues in climate change, including aerosol–cloud interactions, chemistry–climate interactions, and coupling between the troposphere and stratosphere. The model is also designed to serve as the physical system component of earth system models and models for decadal prediction in the near-term future—for example, through improved simulations in tropical land precipitation relative to earlier-generation GFDL models. This paper describes the dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component (AM3) of this model. Relative to GFDL AM2, AM3 includes new treatments of deep and shallow cumulus convection, cloud droplet activation by aerosols, subgrid variability of stratiform vertical velocities for droplet activation, and atmospheric chemistry driven by emissions with advective, convective, and turbulent transport. AM3 employs a cubed-sphere implementation of a finite-volume dynamical core and is coupled to LM3, a new land model with ecosystem dynamics and hydrology. Its horizontal resolution is approximately 200 km, and its vertical resolution ranges approximately from 70 m near the earth’s surface to 1 to 1.5 km near the tropopause and 3 to 4 km in much of the stratosphere. Most basic circulation features in AM3 are simulated as realistically, or more so, as in AM2. In particular, dry biases have been reduced over South America. In coupledmode, the simulation of Arctic sea ice concentration has improved. AM3 aerosol optical depths, scattering properties, and surface clear-sky downward shortwave radiation are more realistic than in AM2. The simulation of marine stratocumulus decks remains problematic, as in AM2. The most intense 0.2% of precipitation rates occur less frequently in AM3 than observed. The last two decades of the twentieth century warm in CM3 by 0.32°C relative to 1881–1920. The Climate Research Unit (CRU) and Goddard Institute for Space Studies analyses of observations show warming of 0.56° and 0.52°C, respectively, over this period. CM3 includes anthropogenic cooling by aerosol–cloud interactions, and its warming by the late twentieth century is somewhat less realistic than in CM2.1, which warmed 0.66°C but did not include aerosol–cloud interactions. The improved simulation of the direct aerosol effect (apparent in surface clear-sky downward radiation) in CM3 evidently acts in concert with its simulation of cloud–aerosol interactions to limit greenhouse gas warming.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/2011jcli3955.1</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-8755 |
ispartof | Journal of climate, 2011-07, Vol.24 (13), p.3484-3519 |
issn | 0894-8755 1520-0442 |
language | eng |
recordid | cdi_proquest_miscellaneous_883030531 |
source | Jstor Complete Legacy; American Meteorological Society; EZB-FREE-00999 freely available EZB journals |
subjects | Aerosol concentrations Aerosol effects Aerosol optical depth Aerosol-cloud interactions Aerosols Algorithms Anthropogenic factors Arctic sea ice Atmospheric chemistry Atmospheric circulation Atmospheric models Biogeochemistry Clear sky Climate change Climate models Cloud droplets Clouds Convection Convection clouds Coupled modes Cumulus clouds Droplets Earth surface Earth, ocean, space Ecosystem dynamics Efficiency Emissions Exact sciences and technology External geophysics Fluid dynamics Fluid flow General circulation models Geophysical fluids Greenhouse effect Greenhouse gases Hydrodynamics Hydrology Marine Meteorology Modelling Oceans Optical properties Ozone Parameterization Precipitation Radiation Resolution Science Sea ice Sea ice concentrations Short wave radiation Simulation Sky SPECIAL GFDL's Coupled Model-3 (CM3) COLLECTION Stratosphere Tropopause Troposphere Vertical air currents Vertical velocities |
title | The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A02%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Dynamical%20Core,%20Physical%20Parameterizations,%20and%20Basic%20Simulation%20Characteristics%20of%20the%20Atmospheric%20Component%20AM3%20of%20the%20GFDL%20Global%20Coupled%20Model%20CM3&rft.jtitle=Journal%20of%20climate&rft.au=Donner,%20Leo%20J.&rft.date=2011-07-01&rft.volume=24&rft.issue=13&rft.spage=3484&rft.epage=3519&rft.pages=3484-3519&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/2011jcli3955.1&rft_dat=%3Cjstor_proqu%3E26191095%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814382979&rft_id=info:pmid/&rft_jstor_id=26191095&rfr_iscdi=true |