The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3

The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a coupled general circulation model (CM3) for the atmosphere, oceans, land, and sea ice. The goal of CM3 is to address emerging issues in climate change, including aerosol–cloud interactions, chemistry–climate interactions, and coupling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2011-07, Vol.24 (13), p.3484-3519
Hauptverfasser: Donner, Leo J., Wyman, Bruce L., Hemler, Richard S., Horowitz, Larry W., Ming, Yi, Zhao, Ming, Golaz, Jean-Christophe, Ginoux, Paul, Lin, S.-J., Schwarzkopf, M. Daniel, Austin, John, Alaka, Ghassan, Cooke, William F., Delworth, Thomas L., Freidenreich, Stuart M., Gordon, C. T., Griffies, Stephen M., Held, Isaac M., Hurlin, William J., Klein, Stephen A., Knutson, Thomas R., Langenhorst, Amy R., Lee, Hyun-Chul, Lin, Yanluan, Magi, Brian I., Malyshev, Sergey L., Milly, P. C. D., Naik, Vaishali, Nath, Mary J., Pincus, Robert, Ploshay, Jeffrey J., Ramaswamy, V., Seman, Charles J., Shevliakova, Elena, Sirutis, Joseph J., Stern, William F., Stouffer, Ronald J., Wilson, R. John, Winton, Michael, Wittenberg, Andrew T., Zeng, Fanrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3519
container_issue 13
container_start_page 3484
container_title Journal of climate
container_volume 24
creator Donner, Leo J.
Wyman, Bruce L.
Hemler, Richard S.
Horowitz, Larry W.
Ming, Yi
Zhao, Ming
Golaz, Jean-Christophe
Ginoux, Paul
Lin, S.-J.
Schwarzkopf, M. Daniel
Austin, John
Alaka, Ghassan
Cooke, William F.
Delworth, Thomas L.
Freidenreich, Stuart M.
Gordon, C. T.
Griffies, Stephen M.
Held, Isaac M.
Hurlin, William J.
Klein, Stephen A.
Knutson, Thomas R.
Langenhorst, Amy R.
Lee, Hyun-Chul
Lin, Yanluan
Magi, Brian I.
Malyshev, Sergey L.
Milly, P. C. D.
Naik, Vaishali
Nath, Mary J.
Pincus, Robert
Ploshay, Jeffrey J.
Ramaswamy, V.
Seman, Charles J.
Shevliakova, Elena
Sirutis, Joseph J.
Stern, William F.
Stouffer, Ronald J.
Wilson, R. John
Winton, Michael
Wittenberg, Andrew T.
Zeng, Fanrong
description The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a coupled general circulation model (CM3) for the atmosphere, oceans, land, and sea ice. The goal of CM3 is to address emerging issues in climate change, including aerosol–cloud interactions, chemistry–climate interactions, and coupling between the troposphere and stratosphere. The model is also designed to serve as the physical system component of earth system models and models for decadal prediction in the near-term future—for example, through improved simulations in tropical land precipitation relative to earlier-generation GFDL models. This paper describes the dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component (AM3) of this model. Relative to GFDL AM2, AM3 includes new treatments of deep and shallow cumulus convection, cloud droplet activation by aerosols, subgrid variability of stratiform vertical velocities for droplet activation, and atmospheric chemistry driven by emissions with advective, convective, and turbulent transport. AM3 employs a cubed-sphere implementation of a finite-volume dynamical core and is coupled to LM3, a new land model with ecosystem dynamics and hydrology. Its horizontal resolution is approximately 200 km, and its vertical resolution ranges approximately from 70 m near the earth’s surface to 1 to 1.5 km near the tropopause and 3 to 4 km in much of the stratosphere. Most basic circulation features in AM3 are simulated as realistically, or more so, as in AM2. In particular, dry biases have been reduced over South America. In coupledmode, the simulation of Arctic sea ice concentration has improved. AM3 aerosol optical depths, scattering properties, and surface clear-sky downward shortwave radiation are more realistic than in AM2. The simulation of marine stratocumulus decks remains problematic, as in AM2. The most intense 0.2% of precipitation rates occur less frequently in AM3 than observed. The last two decades of the twentieth century warm in CM3 by 0.32°C relative to 1881–1920. The Climate Research Unit (CRU) and Goddard Institute for Space Studies analyses of observations show warming of 0.56° and 0.52°C, respectively, over this period. CM3 includes anthropogenic cooling by aerosol–cloud interactions, and its warming by the late twentieth century is somewhat less realistic than in CM2.1, which warmed 0.66°C but did not include aerosol–cloud interactions. The improved simulation of the direct aerosol effec
doi_str_mv 10.1175/2011jcli3955.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_883030531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26191095</jstor_id><sourcerecordid>26191095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-56124d976f62fe310990f7ba6ed69863f5194d5e260244c966cb1ee6bead7bb3</originalsourceid><addsrcrecordid>eNp1kUtv1DAUhSNEJYbClh2SBUJsmqnfj-U0pUOrGVGJ2UeO42g8SuJgJ4vhp_BrcWYKSEhdWffez-dc-2TZOwSXCAl2jSFCB9M6ohhbohfZAjEMc0gpfpktoFQ0l4KxV9nrGA8QIswhXGS_dnsLbo-97pzRLSh8sFfgcX-Mp_JRB93Z0Qb3U4_O9_EK6L4GNzqNwXfXTe2pDYp9As3MxdGZCHwDxqS7Gjsfh31qm6TcDb63_QhWW_IHWN_dbsC69dXJehpaW4Otr22qtuRNdtHoNtq3T-dltrv7siu-5ptv6_titckNw2rMGUeY1krwhuPGEgSVgo2oNLc1V5KThiFFa2bTezGlRnFuKmQtr6yuRVWRy-zzWXYI_sdk41h2Lhrbtrq3foqllAQSyAhK5If_yIOfQp92K6XgUkohRYI-PgdhiSiRWAmVqOWZMsHHGGxTDsF1OhxLBMs5zXJO86HY3M9plrP3pydZHVMyTdC9cfHvLUwJIYLM9u_P3CGOPvybc6TSzzDyG8oDp_E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814382979</pqid></control><display><type>article</type><title>The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Donner, Leo J. ; Wyman, Bruce L. ; Hemler, Richard S. ; Horowitz, Larry W. ; Ming, Yi ; Zhao, Ming ; Golaz, Jean-Christophe ; Ginoux, Paul ; Lin, S.-J. ; Schwarzkopf, M. Daniel ; Austin, John ; Alaka, Ghassan ; Cooke, William F. ; Delworth, Thomas L. ; Freidenreich, Stuart M. ; Gordon, C. T. ; Griffies, Stephen M. ; Held, Isaac M. ; Hurlin, William J. ; Klein, Stephen A. ; Knutson, Thomas R. ; Langenhorst, Amy R. ; Lee, Hyun-Chul ; Lin, Yanluan ; Magi, Brian I. ; Malyshev, Sergey L. ; Milly, P. C. D. ; Naik, Vaishali ; Nath, Mary J. ; Pincus, Robert ; Ploshay, Jeffrey J. ; Ramaswamy, V. ; Seman, Charles J. ; Shevliakova, Elena ; Sirutis, Joseph J. ; Stern, William F. ; Stouffer, Ronald J. ; Wilson, R. John ; Winton, Michael ; Wittenberg, Andrew T. ; Zeng, Fanrong</creator><creatorcontrib>Donner, Leo J. ; Wyman, Bruce L. ; Hemler, Richard S. ; Horowitz, Larry W. ; Ming, Yi ; Zhao, Ming ; Golaz, Jean-Christophe ; Ginoux, Paul ; Lin, S.-J. ; Schwarzkopf, M. Daniel ; Austin, John ; Alaka, Ghassan ; Cooke, William F. ; Delworth, Thomas L. ; Freidenreich, Stuart M. ; Gordon, C. T. ; Griffies, Stephen M. ; Held, Isaac M. ; Hurlin, William J. ; Klein, Stephen A. ; Knutson, Thomas R. ; Langenhorst, Amy R. ; Lee, Hyun-Chul ; Lin, Yanluan ; Magi, Brian I. ; Malyshev, Sergey L. ; Milly, P. C. D. ; Naik, Vaishali ; Nath, Mary J. ; Pincus, Robert ; Ploshay, Jeffrey J. ; Ramaswamy, V. ; Seman, Charles J. ; Shevliakova, Elena ; Sirutis, Joseph J. ; Stern, William F. ; Stouffer, Ronald J. ; Wilson, R. John ; Winton, Michael ; Wittenberg, Andrew T. ; Zeng, Fanrong</creatorcontrib><description>The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a coupled general circulation model (CM3) for the atmosphere, oceans, land, and sea ice. The goal of CM3 is to address emerging issues in climate change, including aerosol–cloud interactions, chemistry–climate interactions, and coupling between the troposphere and stratosphere. The model is also designed to serve as the physical system component of earth system models and models for decadal prediction in the near-term future—for example, through improved simulations in tropical land precipitation relative to earlier-generation GFDL models. This paper describes the dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component (AM3) of this model. Relative to GFDL AM2, AM3 includes new treatments of deep and shallow cumulus convection, cloud droplet activation by aerosols, subgrid variability of stratiform vertical velocities for droplet activation, and atmospheric chemistry driven by emissions with advective, convective, and turbulent transport. AM3 employs a cubed-sphere implementation of a finite-volume dynamical core and is coupled to LM3, a new land model with ecosystem dynamics and hydrology. Its horizontal resolution is approximately 200 km, and its vertical resolution ranges approximately from 70 m near the earth’s surface to 1 to 1.5 km near the tropopause and 3 to 4 km in much of the stratosphere. Most basic circulation features in AM3 are simulated as realistically, or more so, as in AM2. In particular, dry biases have been reduced over South America. In coupledmode, the simulation of Arctic sea ice concentration has improved. AM3 aerosol optical depths, scattering properties, and surface clear-sky downward shortwave radiation are more realistic than in AM2. The simulation of marine stratocumulus decks remains problematic, as in AM2. The most intense 0.2% of precipitation rates occur less frequently in AM3 than observed. The last two decades of the twentieth century warm in CM3 by 0.32°C relative to 1881–1920. The Climate Research Unit (CRU) and Goddard Institute for Space Studies analyses of observations show warming of 0.56° and 0.52°C, respectively, over this period. CM3 includes anthropogenic cooling by aerosol–cloud interactions, and its warming by the late twentieth century is somewhat less realistic than in CM2.1, which warmed 0.66°C but did not include aerosol–cloud interactions. The improved simulation of the direct aerosol effect (apparent in surface clear-sky downward radiation) in CM3 evidently acts in concert with its simulation of cloud–aerosol interactions to limit greenhouse gas warming.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/2011jcli3955.1</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Aerosol concentrations ; Aerosol effects ; Aerosol optical depth ; Aerosol-cloud interactions ; Aerosols ; Algorithms ; Anthropogenic factors ; Arctic sea ice ; Atmospheric chemistry ; Atmospheric circulation ; Atmospheric models ; Biogeochemistry ; Clear sky ; Climate change ; Climate models ; Cloud droplets ; Clouds ; Convection ; Convection clouds ; Coupled modes ; Cumulus clouds ; Droplets ; Earth surface ; Earth, ocean, space ; Ecosystem dynamics ; Efficiency ; Emissions ; Exact sciences and technology ; External geophysics ; Fluid dynamics ; Fluid flow ; General circulation models ; Geophysical fluids ; Greenhouse effect ; Greenhouse gases ; Hydrodynamics ; Hydrology ; Marine ; Meteorology ; Modelling ; Oceans ; Optical properties ; Ozone ; Parameterization ; Precipitation ; Radiation ; Resolution ; Science ; Sea ice ; Sea ice concentrations ; Short wave radiation ; Simulation ; Sky ; SPECIAL GFDL's Coupled Model-3 (CM3) COLLECTION ; Stratosphere ; Tropopause ; Troposphere ; Vertical air currents ; Vertical velocities</subject><ispartof>Journal of climate, 2011-07, Vol.24 (13), p.3484-3519</ispartof><rights>2011 American Meteorological Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society 2011</rights><rights>Copyright American Meteorological Society Jul 1, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-56124d976f62fe310990f7ba6ed69863f5194d5e260244c966cb1ee6bead7bb3</citedby><cites>FETCH-LOGICAL-c529t-56124d976f62fe310990f7ba6ed69863f5194d5e260244c966cb1ee6bead7bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26191095$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26191095$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24333737$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Donner, Leo J.</creatorcontrib><creatorcontrib>Wyman, Bruce L.</creatorcontrib><creatorcontrib>Hemler, Richard S.</creatorcontrib><creatorcontrib>Horowitz, Larry W.</creatorcontrib><creatorcontrib>Ming, Yi</creatorcontrib><creatorcontrib>Zhao, Ming</creatorcontrib><creatorcontrib>Golaz, Jean-Christophe</creatorcontrib><creatorcontrib>Ginoux, Paul</creatorcontrib><creatorcontrib>Lin, S.-J.</creatorcontrib><creatorcontrib>Schwarzkopf, M. Daniel</creatorcontrib><creatorcontrib>Austin, John</creatorcontrib><creatorcontrib>Alaka, Ghassan</creatorcontrib><creatorcontrib>Cooke, William F.</creatorcontrib><creatorcontrib>Delworth, Thomas L.</creatorcontrib><creatorcontrib>Freidenreich, Stuart M.</creatorcontrib><creatorcontrib>Gordon, C. T.</creatorcontrib><creatorcontrib>Griffies, Stephen M.</creatorcontrib><creatorcontrib>Held, Isaac M.</creatorcontrib><creatorcontrib>Hurlin, William J.</creatorcontrib><creatorcontrib>Klein, Stephen A.</creatorcontrib><creatorcontrib>Knutson, Thomas R.</creatorcontrib><creatorcontrib>Langenhorst, Amy R.</creatorcontrib><creatorcontrib>Lee, Hyun-Chul</creatorcontrib><creatorcontrib>Lin, Yanluan</creatorcontrib><creatorcontrib>Magi, Brian I.</creatorcontrib><creatorcontrib>Malyshev, Sergey L.</creatorcontrib><creatorcontrib>Milly, P. C. D.</creatorcontrib><creatorcontrib>Naik, Vaishali</creatorcontrib><creatorcontrib>Nath, Mary J.</creatorcontrib><creatorcontrib>Pincus, Robert</creatorcontrib><creatorcontrib>Ploshay, Jeffrey J.</creatorcontrib><creatorcontrib>Ramaswamy, V.</creatorcontrib><creatorcontrib>Seman, Charles J.</creatorcontrib><creatorcontrib>Shevliakova, Elena</creatorcontrib><creatorcontrib>Sirutis, Joseph J.</creatorcontrib><creatorcontrib>Stern, William F.</creatorcontrib><creatorcontrib>Stouffer, Ronald J.</creatorcontrib><creatorcontrib>Wilson, R. John</creatorcontrib><creatorcontrib>Winton, Michael</creatorcontrib><creatorcontrib>Wittenberg, Andrew T.</creatorcontrib><creatorcontrib>Zeng, Fanrong</creatorcontrib><title>The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3</title><title>Journal of climate</title><description>The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a coupled general circulation model (CM3) for the atmosphere, oceans, land, and sea ice. The goal of CM3 is to address emerging issues in climate change, including aerosol–cloud interactions, chemistry–climate interactions, and coupling between the troposphere and stratosphere. The model is also designed to serve as the physical system component of earth system models and models for decadal prediction in the near-term future—for example, through improved simulations in tropical land precipitation relative to earlier-generation GFDL models. This paper describes the dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component (AM3) of this model. Relative to GFDL AM2, AM3 includes new treatments of deep and shallow cumulus convection, cloud droplet activation by aerosols, subgrid variability of stratiform vertical velocities for droplet activation, and atmospheric chemistry driven by emissions with advective, convective, and turbulent transport. AM3 employs a cubed-sphere implementation of a finite-volume dynamical core and is coupled to LM3, a new land model with ecosystem dynamics and hydrology. Its horizontal resolution is approximately 200 km, and its vertical resolution ranges approximately from 70 m near the earth’s surface to 1 to 1.5 km near the tropopause and 3 to 4 km in much of the stratosphere. Most basic circulation features in AM3 are simulated as realistically, or more so, as in AM2. In particular, dry biases have been reduced over South America. In coupledmode, the simulation of Arctic sea ice concentration has improved. AM3 aerosol optical depths, scattering properties, and surface clear-sky downward shortwave radiation are more realistic than in AM2. The simulation of marine stratocumulus decks remains problematic, as in AM2. The most intense 0.2% of precipitation rates occur less frequently in AM3 than observed. The last two decades of the twentieth century warm in CM3 by 0.32°C relative to 1881–1920. The Climate Research Unit (CRU) and Goddard Institute for Space Studies analyses of observations show warming of 0.56° and 0.52°C, respectively, over this period. CM3 includes anthropogenic cooling by aerosol–cloud interactions, and its warming by the late twentieth century is somewhat less realistic than in CM2.1, which warmed 0.66°C but did not include aerosol–cloud interactions. The improved simulation of the direct aerosol effect (apparent in surface clear-sky downward radiation) in CM3 evidently acts in concert with its simulation of cloud–aerosol interactions to limit greenhouse gas warming.</description><subject>Aerosol concentrations</subject><subject>Aerosol effects</subject><subject>Aerosol optical depth</subject><subject>Aerosol-cloud interactions</subject><subject>Aerosols</subject><subject>Algorithms</subject><subject>Anthropogenic factors</subject><subject>Arctic sea ice</subject><subject>Atmospheric chemistry</subject><subject>Atmospheric circulation</subject><subject>Atmospheric models</subject><subject>Biogeochemistry</subject><subject>Clear sky</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Cloud droplets</subject><subject>Clouds</subject><subject>Convection</subject><subject>Convection clouds</subject><subject>Coupled modes</subject><subject>Cumulus clouds</subject><subject>Droplets</subject><subject>Earth surface</subject><subject>Earth, ocean, space</subject><subject>Ecosystem dynamics</subject><subject>Efficiency</subject><subject>Emissions</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>General circulation models</subject><subject>Geophysical fluids</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Hydrodynamics</subject><subject>Hydrology</subject><subject>Marine</subject><subject>Meteorology</subject><subject>Modelling</subject><subject>Oceans</subject><subject>Optical properties</subject><subject>Ozone</subject><subject>Parameterization</subject><subject>Precipitation</subject><subject>Radiation</subject><subject>Resolution</subject><subject>Science</subject><subject>Sea ice</subject><subject>Sea ice concentrations</subject><subject>Short wave radiation</subject><subject>Simulation</subject><subject>Sky</subject><subject>SPECIAL GFDL's Coupled Model-3 (CM3) COLLECTION</subject><subject>Stratosphere</subject><subject>Tropopause</subject><subject>Troposphere</subject><subject>Vertical air currents</subject><subject>Vertical velocities</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kUtv1DAUhSNEJYbClh2SBUJsmqnfj-U0pUOrGVGJ2UeO42g8SuJgJ4vhp_BrcWYKSEhdWffez-dc-2TZOwSXCAl2jSFCB9M6ohhbohfZAjEMc0gpfpktoFQ0l4KxV9nrGA8QIswhXGS_dnsLbo-97pzRLSh8sFfgcX-Mp_JRB93Z0Qb3U4_O9_EK6L4GNzqNwXfXTe2pDYp9As3MxdGZCHwDxqS7Gjsfh31qm6TcDb63_QhWW_IHWN_dbsC69dXJehpaW4Otr22qtuRNdtHoNtq3T-dltrv7siu-5ptv6_titckNw2rMGUeY1krwhuPGEgSVgo2oNLc1V5KThiFFa2bTezGlRnFuKmQtr6yuRVWRy-zzWXYI_sdk41h2Lhrbtrq3foqllAQSyAhK5If_yIOfQp92K6XgUkohRYI-PgdhiSiRWAmVqOWZMsHHGGxTDsF1OhxLBMs5zXJO86HY3M9plrP3pydZHVMyTdC9cfHvLUwJIYLM9u_P3CGOPvybc6TSzzDyG8oDp_E</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Donner, Leo J.</creator><creator>Wyman, Bruce L.</creator><creator>Hemler, Richard S.</creator><creator>Horowitz, Larry W.</creator><creator>Ming, Yi</creator><creator>Zhao, Ming</creator><creator>Golaz, Jean-Christophe</creator><creator>Ginoux, Paul</creator><creator>Lin, S.-J.</creator><creator>Schwarzkopf, M. Daniel</creator><creator>Austin, John</creator><creator>Alaka, Ghassan</creator><creator>Cooke, William F.</creator><creator>Delworth, Thomas L.</creator><creator>Freidenreich, Stuart M.</creator><creator>Gordon, C. T.</creator><creator>Griffies, Stephen M.</creator><creator>Held, Isaac M.</creator><creator>Hurlin, William J.</creator><creator>Klein, Stephen A.</creator><creator>Knutson, Thomas R.</creator><creator>Langenhorst, Amy R.</creator><creator>Lee, Hyun-Chul</creator><creator>Lin, Yanluan</creator><creator>Magi, Brian I.</creator><creator>Malyshev, Sergey L.</creator><creator>Milly, P. C. D.</creator><creator>Naik, Vaishali</creator><creator>Nath, Mary J.</creator><creator>Pincus, Robert</creator><creator>Ploshay, Jeffrey J.</creator><creator>Ramaswamy, V.</creator><creator>Seman, Charles J.</creator><creator>Shevliakova, Elena</creator><creator>Sirutis, Joseph J.</creator><creator>Stern, William F.</creator><creator>Stouffer, Ronald J.</creator><creator>Wilson, R. John</creator><creator>Winton, Michael</creator><creator>Wittenberg, Andrew T.</creator><creator>Zeng, Fanrong</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>7ST</scope><scope>7TN</scope><scope>7U6</scope></search><sort><creationdate>20110701</creationdate><title>The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3</title><author>Donner, Leo J. ; Wyman, Bruce L. ; Hemler, Richard S. ; Horowitz, Larry W. ; Ming, Yi ; Zhao, Ming ; Golaz, Jean-Christophe ; Ginoux, Paul ; Lin, S.-J. ; Schwarzkopf, M. Daniel ; Austin, John ; Alaka, Ghassan ; Cooke, William F. ; Delworth, Thomas L. ; Freidenreich, Stuart M. ; Gordon, C. T. ; Griffies, Stephen M. ; Held, Isaac M. ; Hurlin, William J. ; Klein, Stephen A. ; Knutson, Thomas R. ; Langenhorst, Amy R. ; Lee, Hyun-Chul ; Lin, Yanluan ; Magi, Brian I. ; Malyshev, Sergey L. ; Milly, P. C. D. ; Naik, Vaishali ; Nath, Mary J. ; Pincus, Robert ; Ploshay, Jeffrey J. ; Ramaswamy, V. ; Seman, Charles J. ; Shevliakova, Elena ; Sirutis, Joseph J. ; Stern, William F. ; Stouffer, Ronald J. ; Wilson, R. John ; Winton, Michael ; Wittenberg, Andrew T. ; Zeng, Fanrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-56124d976f62fe310990f7ba6ed69863f5194d5e260244c966cb1ee6bead7bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aerosol concentrations</topic><topic>Aerosol effects</topic><topic>Aerosol optical depth</topic><topic>Aerosol-cloud interactions</topic><topic>Aerosols</topic><topic>Algorithms</topic><topic>Anthropogenic factors</topic><topic>Arctic sea ice</topic><topic>Atmospheric chemistry</topic><topic>Atmospheric circulation</topic><topic>Atmospheric models</topic><topic>Biogeochemistry</topic><topic>Clear sky</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Cloud droplets</topic><topic>Clouds</topic><topic>Convection</topic><topic>Convection clouds</topic><topic>Coupled modes</topic><topic>Cumulus clouds</topic><topic>Droplets</topic><topic>Earth surface</topic><topic>Earth, ocean, space</topic><topic>Ecosystem dynamics</topic><topic>Efficiency</topic><topic>Emissions</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>General circulation models</topic><topic>Geophysical fluids</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Hydrodynamics</topic><topic>Hydrology</topic><topic>Marine</topic><topic>Meteorology</topic><topic>Modelling</topic><topic>Oceans</topic><topic>Optical properties</topic><topic>Ozone</topic><topic>Parameterization</topic><topic>Precipitation</topic><topic>Radiation</topic><topic>Resolution</topic><topic>Science</topic><topic>Sea ice</topic><topic>Sea ice concentrations</topic><topic>Short wave radiation</topic><topic>Simulation</topic><topic>Sky</topic><topic>SPECIAL GFDL's Coupled Model-3 (CM3) COLLECTION</topic><topic>Stratosphere</topic><topic>Tropopause</topic><topic>Troposphere</topic><topic>Vertical air currents</topic><topic>Vertical velocities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Donner, Leo J.</creatorcontrib><creatorcontrib>Wyman, Bruce L.</creatorcontrib><creatorcontrib>Hemler, Richard S.</creatorcontrib><creatorcontrib>Horowitz, Larry W.</creatorcontrib><creatorcontrib>Ming, Yi</creatorcontrib><creatorcontrib>Zhao, Ming</creatorcontrib><creatorcontrib>Golaz, Jean-Christophe</creatorcontrib><creatorcontrib>Ginoux, Paul</creatorcontrib><creatorcontrib>Lin, S.-J.</creatorcontrib><creatorcontrib>Schwarzkopf, M. Daniel</creatorcontrib><creatorcontrib>Austin, John</creatorcontrib><creatorcontrib>Alaka, Ghassan</creatorcontrib><creatorcontrib>Cooke, William F.</creatorcontrib><creatorcontrib>Delworth, Thomas L.</creatorcontrib><creatorcontrib>Freidenreich, Stuart M.</creatorcontrib><creatorcontrib>Gordon, C. T.</creatorcontrib><creatorcontrib>Griffies, Stephen M.</creatorcontrib><creatorcontrib>Held, Isaac M.</creatorcontrib><creatorcontrib>Hurlin, William J.</creatorcontrib><creatorcontrib>Klein, Stephen A.</creatorcontrib><creatorcontrib>Knutson, Thomas R.</creatorcontrib><creatorcontrib>Langenhorst, Amy R.</creatorcontrib><creatorcontrib>Lee, Hyun-Chul</creatorcontrib><creatorcontrib>Lin, Yanluan</creatorcontrib><creatorcontrib>Magi, Brian I.</creatorcontrib><creatorcontrib>Malyshev, Sergey L.</creatorcontrib><creatorcontrib>Milly, P. C. D.</creatorcontrib><creatorcontrib>Naik, Vaishali</creatorcontrib><creatorcontrib>Nath, Mary J.</creatorcontrib><creatorcontrib>Pincus, Robert</creatorcontrib><creatorcontrib>Ploshay, Jeffrey J.</creatorcontrib><creatorcontrib>Ramaswamy, V.</creatorcontrib><creatorcontrib>Seman, Charles J.</creatorcontrib><creatorcontrib>Shevliakova, Elena</creatorcontrib><creatorcontrib>Sirutis, Joseph J.</creatorcontrib><creatorcontrib>Stern, William F.</creatorcontrib><creatorcontrib>Stouffer, Ronald J.</creatorcontrib><creatorcontrib>Wilson, R. John</creatorcontrib><creatorcontrib>Winton, Michael</creatorcontrib><creatorcontrib>Wittenberg, Andrew T.</creatorcontrib><creatorcontrib>Zeng, Fanrong</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Donner, Leo J.</au><au>Wyman, Bruce L.</au><au>Hemler, Richard S.</au><au>Horowitz, Larry W.</au><au>Ming, Yi</au><au>Zhao, Ming</au><au>Golaz, Jean-Christophe</au><au>Ginoux, Paul</au><au>Lin, S.-J.</au><au>Schwarzkopf, M. Daniel</au><au>Austin, John</au><au>Alaka, Ghassan</au><au>Cooke, William F.</au><au>Delworth, Thomas L.</au><au>Freidenreich, Stuart M.</au><au>Gordon, C. T.</au><au>Griffies, Stephen M.</au><au>Held, Isaac M.</au><au>Hurlin, William J.</au><au>Klein, Stephen A.</au><au>Knutson, Thomas R.</au><au>Langenhorst, Amy R.</au><au>Lee, Hyun-Chul</au><au>Lin, Yanluan</au><au>Magi, Brian I.</au><au>Malyshev, Sergey L.</au><au>Milly, P. C. D.</au><au>Naik, Vaishali</au><au>Nath, Mary J.</au><au>Pincus, Robert</au><au>Ploshay, Jeffrey J.</au><au>Ramaswamy, V.</au><au>Seman, Charles J.</au><au>Shevliakova, Elena</au><au>Sirutis, Joseph J.</au><au>Stern, William F.</au><au>Stouffer, Ronald J.</au><au>Wilson, R. John</au><au>Winton, Michael</au><au>Wittenberg, Andrew T.</au><au>Zeng, Fanrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3</atitle><jtitle>Journal of climate</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>24</volume><issue>13</issue><spage>3484</spage><epage>3519</epage><pages>3484-3519</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a coupled general circulation model (CM3) for the atmosphere, oceans, land, and sea ice. The goal of CM3 is to address emerging issues in climate change, including aerosol–cloud interactions, chemistry–climate interactions, and coupling between the troposphere and stratosphere. The model is also designed to serve as the physical system component of earth system models and models for decadal prediction in the near-term future—for example, through improved simulations in tropical land precipitation relative to earlier-generation GFDL models. This paper describes the dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component (AM3) of this model. Relative to GFDL AM2, AM3 includes new treatments of deep and shallow cumulus convection, cloud droplet activation by aerosols, subgrid variability of stratiform vertical velocities for droplet activation, and atmospheric chemistry driven by emissions with advective, convective, and turbulent transport. AM3 employs a cubed-sphere implementation of a finite-volume dynamical core and is coupled to LM3, a new land model with ecosystem dynamics and hydrology. Its horizontal resolution is approximately 200 km, and its vertical resolution ranges approximately from 70 m near the earth’s surface to 1 to 1.5 km near the tropopause and 3 to 4 km in much of the stratosphere. Most basic circulation features in AM3 are simulated as realistically, or more so, as in AM2. In particular, dry biases have been reduced over South America. In coupledmode, the simulation of Arctic sea ice concentration has improved. AM3 aerosol optical depths, scattering properties, and surface clear-sky downward shortwave radiation are more realistic than in AM2. The simulation of marine stratocumulus decks remains problematic, as in AM2. The most intense 0.2% of precipitation rates occur less frequently in AM3 than observed. The last two decades of the twentieth century warm in CM3 by 0.32°C relative to 1881–1920. The Climate Research Unit (CRU) and Goddard Institute for Space Studies analyses of observations show warming of 0.56° and 0.52°C, respectively, over this period. CM3 includes anthropogenic cooling by aerosol–cloud interactions, and its warming by the late twentieth century is somewhat less realistic than in CM2.1, which warmed 0.66°C but did not include aerosol–cloud interactions. The improved simulation of the direct aerosol effect (apparent in surface clear-sky downward radiation) in CM3 evidently acts in concert with its simulation of cloud–aerosol interactions to limit greenhouse gas warming.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/2011jcli3955.1</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2011-07, Vol.24 (13), p.3484-3519
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_miscellaneous_883030531
source Jstor Complete Legacy; American Meteorological Society; EZB-FREE-00999 freely available EZB journals
subjects Aerosol concentrations
Aerosol effects
Aerosol optical depth
Aerosol-cloud interactions
Aerosols
Algorithms
Anthropogenic factors
Arctic sea ice
Atmospheric chemistry
Atmospheric circulation
Atmospheric models
Biogeochemistry
Clear sky
Climate change
Climate models
Cloud droplets
Clouds
Convection
Convection clouds
Coupled modes
Cumulus clouds
Droplets
Earth surface
Earth, ocean, space
Ecosystem dynamics
Efficiency
Emissions
Exact sciences and technology
External geophysics
Fluid dynamics
Fluid flow
General circulation models
Geophysical fluids
Greenhouse effect
Greenhouse gases
Hydrodynamics
Hydrology
Marine
Meteorology
Modelling
Oceans
Optical properties
Ozone
Parameterization
Precipitation
Radiation
Resolution
Science
Sea ice
Sea ice concentrations
Short wave radiation
Simulation
Sky
SPECIAL GFDL's Coupled Model-3 (CM3) COLLECTION
Stratosphere
Tropopause
Troposphere
Vertical air currents
Vertical velocities
title The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A02%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Dynamical%20Core,%20Physical%20Parameterizations,%20and%20Basic%20Simulation%20Characteristics%20of%20the%20Atmospheric%20Component%20AM3%20of%20the%20GFDL%20Global%20Coupled%20Model%20CM3&rft.jtitle=Journal%20of%20climate&rft.au=Donner,%20Leo%20J.&rft.date=2011-07-01&rft.volume=24&rft.issue=13&rft.spage=3484&rft.epage=3519&rft.pages=3484-3519&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/2011jcli3955.1&rft_dat=%3Cjstor_proqu%3E26191095%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814382979&rft_id=info:pmid/&rft_jstor_id=26191095&rfr_iscdi=true