Optimal foraging by zooplankton within patches: The case of Daphnia

The motions of many physical particles as well as living creatures are mediated by random influences or ‘noise’. One might expect that over evolutionary time scales internal random processes found in living systems display characteristics that maximize fitness. Here we focus on animal random search...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical biosciences 2007-06, Vol.207 (2), p.165-188
Hauptverfasser: Garcia, Ricardo, Moss, Frank, Nihongi, Ai, Strickler, J. Rudi, Göller, Sebastian, Erdmann, Udo, Schimansky-Geier, Lutz, Sokolov, Igor M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 188
container_issue 2
container_start_page 165
container_title Mathematical biosciences
container_volume 207
creator Garcia, Ricardo
Moss, Frank
Nihongi, Ai
Strickler, J. Rudi
Göller, Sebastian
Erdmann, Udo
Schimansky-Geier, Lutz
Sokolov, Igor M.
description The motions of many physical particles as well as living creatures are mediated by random influences or ‘noise’. One might expect that over evolutionary time scales internal random processes found in living systems display characteristics that maximize fitness. Here we focus on animal random search strategies [G.M. Viswanathan, S.V. Buldyrev, S. Havlin, M.G.E. Da Luz, E.P. Raposo, H.E. Stanley, Optimizing the success of random searches, Nature 401 (1999) 911–914; F. Bartumeus, J. Catalan, U.L. Fulco, M.L. Lyra, G.M. Viswanathan, Optimizing the encounter rate in biological interactions: Lévy versus Brownian stratagies, Phys. Rev. Lett. 88 (2002) 097901 and 89 (2002) 109902], and we describe experiments with the following Daphnia species: D. magna, D. galeata, D. lumholtzi, D. pulicaria, and D. pulex. We observe that the animals, while foraging for food, choose turning angles from distributions that can be described by exponential functions with a range of widths. This observation leads us to speculate and test the notion that this characteristic distribution of turning angles evolved in order to enhance survival. In the case of theoretical agents, some form of randomness is often introduced into search algorithms, especially when information regarding the sought object(s) is incomplete or even misleading. In the case of living animals, many studies have focused on search strategies that involve randomness [H.C. Berg, Random Walks in Biology, Princeton University, Princeton, New Jersey, 1993; A. Okubo, S.A. Levin (Eds.), Diffusion and Ecological Problems: Modern Perspectives, second ed., Springer, New York, 2001]. A simple theory based on stochastic differential equations of the motion backed up by a simulation shows that the collection of material (information, energy, food, supplies, etc.) by an agent executing Brownian-type hopping motions is optimized while foraging for a finite time in a supply patch of limited spatial size if the agent chooses turning angles taken from an exponential distribution with a specific stochastic intensity or ‘noise width’. Search strategies that lead to optimization is a topic of high current interest across many disciplines [D. Wolpert, W. MacReady, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation 1 (1997) 67].
doi_str_mv 10.1016/j.mbs.2006.11.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883028911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0025556407000089</els_id><sourcerecordid>70520682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-fda5b0bc9275d20c99d1b12d2eb28994bdcd7775c703684c0dff6b68934157ab3</originalsourceid><addsrcrecordid>eNp9kDtPwzAURi0EgvL4ASzIE0wJ9zqJncCEylNCYoHZ8ivUpY1DnILg12PUSmxMdznf0dUh5BghR0B-Ps-XOuYMgOeIOWC5RSZYiyYrsCi3yQSAVVlV8XKP7Mc4B0CByHfJHoqCF4AwIdOnfvRLtaBtGNSr716p_qLfIfQL1b2NoaOffpz5jvZqNDMXL-jzzFGjoqOhpdeqn3VeHZKdVi2iO9rcA_Jye_M8vc8en-4eplePmSnLZsxaqyoN2jRMVJaBaRqLGpllTrO6aUptjRVCVEZAwevSgG1brnndFCVWQunigJytvf0Q3lcujnLpo3GL9KoLqyjruoBkQkzk6b-kgIoBr1kCcQ2aIcQ4uFb2Q8oxfEkE-dtYzmVqLH8bS0SZGqfNyUa-0ktn_xabqAm4XAMuxfjwbpDReNcZZ_3gzCht8P_ofwD8vYt0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70520682</pqid></control><display><type>article</type><title>Optimal foraging by zooplankton within patches: The case of Daphnia</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Garcia, Ricardo ; Moss, Frank ; Nihongi, Ai ; Strickler, J. Rudi ; Göller, Sebastian ; Erdmann, Udo ; Schimansky-Geier, Lutz ; Sokolov, Igor M.</creator><creatorcontrib>Garcia, Ricardo ; Moss, Frank ; Nihongi, Ai ; Strickler, J. Rudi ; Göller, Sebastian ; Erdmann, Udo ; Schimansky-Geier, Lutz ; Sokolov, Igor M.</creatorcontrib><description>The motions of many physical particles as well as living creatures are mediated by random influences or ‘noise’. One might expect that over evolutionary time scales internal random processes found in living systems display characteristics that maximize fitness. Here we focus on animal random search strategies [G.M. Viswanathan, S.V. Buldyrev, S. Havlin, M.G.E. Da Luz, E.P. Raposo, H.E. Stanley, Optimizing the success of random searches, Nature 401 (1999) 911–914; F. Bartumeus, J. Catalan, U.L. Fulco, M.L. Lyra, G.M. Viswanathan, Optimizing the encounter rate in biological interactions: Lévy versus Brownian stratagies, Phys. Rev. Lett. 88 (2002) 097901 and 89 (2002) 109902], and we describe experiments with the following Daphnia species: D. magna, D. galeata, D. lumholtzi, D. pulicaria, and D. pulex. We observe that the animals, while foraging for food, choose turning angles from distributions that can be described by exponential functions with a range of widths. This observation leads us to speculate and test the notion that this characteristic distribution of turning angles evolved in order to enhance survival. In the case of theoretical agents, some form of randomness is often introduced into search algorithms, especially when information regarding the sought object(s) is incomplete or even misleading. In the case of living animals, many studies have focused on search strategies that involve randomness [H.C. Berg, Random Walks in Biology, Princeton University, Princeton, New Jersey, 1993; A. Okubo, S.A. Levin (Eds.), Diffusion and Ecological Problems: Modern Perspectives, second ed., Springer, New York, 2001]. A simple theory based on stochastic differential equations of the motion backed up by a simulation shows that the collection of material (information, energy, food, supplies, etc.) by an agent executing Brownian-type hopping motions is optimized while foraging for a finite time in a supply patch of limited spatial size if the agent chooses turning angles taken from an exponential distribution with a specific stochastic intensity or ‘noise width’. Search strategies that lead to optimization is a topic of high current interest across many disciplines [D. Wolpert, W. MacReady, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation 1 (1997) 67].</description><identifier>ISSN: 0025-5564</identifier><identifier>EISSN: 1879-3134</identifier><identifier>DOI: 10.1016/j.mbs.2006.11.014</identifier><identifier>PMID: 17363010</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Animals ; Biological Evolution ; Computer Simulation ; Daphnia - anatomy &amp; histology ; Daphnia - physiology ; Feeding Behavior - physiology ; Freshwater ; Locomotion ; Models, Biological ; Natural selection ; Natural stochastic resonance ; Optimal foraging ; Pulicaria ; Species Specificity ; Zooplankton ; Zooplankton - physiology</subject><ispartof>Mathematical biosciences, 2007-06, Vol.207 (2), p.165-188</ispartof><rights>2007 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-fda5b0bc9275d20c99d1b12d2eb28994bdcd7775c703684c0dff6b68934157ab3</citedby><cites>FETCH-LOGICAL-c449t-fda5b0bc9275d20c99d1b12d2eb28994bdcd7775c703684c0dff6b68934157ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mbs.2006.11.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17363010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcia, Ricardo</creatorcontrib><creatorcontrib>Moss, Frank</creatorcontrib><creatorcontrib>Nihongi, Ai</creatorcontrib><creatorcontrib>Strickler, J. Rudi</creatorcontrib><creatorcontrib>Göller, Sebastian</creatorcontrib><creatorcontrib>Erdmann, Udo</creatorcontrib><creatorcontrib>Schimansky-Geier, Lutz</creatorcontrib><creatorcontrib>Sokolov, Igor M.</creatorcontrib><title>Optimal foraging by zooplankton within patches: The case of Daphnia</title><title>Mathematical biosciences</title><addtitle>Math Biosci</addtitle><description>The motions of many physical particles as well as living creatures are mediated by random influences or ‘noise’. One might expect that over evolutionary time scales internal random processes found in living systems display characteristics that maximize fitness. Here we focus on animal random search strategies [G.M. Viswanathan, S.V. Buldyrev, S. Havlin, M.G.E. Da Luz, E.P. Raposo, H.E. Stanley, Optimizing the success of random searches, Nature 401 (1999) 911–914; F. Bartumeus, J. Catalan, U.L. Fulco, M.L. Lyra, G.M. Viswanathan, Optimizing the encounter rate in biological interactions: Lévy versus Brownian stratagies, Phys. Rev. Lett. 88 (2002) 097901 and 89 (2002) 109902], and we describe experiments with the following Daphnia species: D. magna, D. galeata, D. lumholtzi, D. pulicaria, and D. pulex. We observe that the animals, while foraging for food, choose turning angles from distributions that can be described by exponential functions with a range of widths. This observation leads us to speculate and test the notion that this characteristic distribution of turning angles evolved in order to enhance survival. In the case of theoretical agents, some form of randomness is often introduced into search algorithms, especially when information regarding the sought object(s) is incomplete or even misleading. In the case of living animals, many studies have focused on search strategies that involve randomness [H.C. Berg, Random Walks in Biology, Princeton University, Princeton, New Jersey, 1993; A. Okubo, S.A. Levin (Eds.), Diffusion and Ecological Problems: Modern Perspectives, second ed., Springer, New York, 2001]. A simple theory based on stochastic differential equations of the motion backed up by a simulation shows that the collection of material (information, energy, food, supplies, etc.) by an agent executing Brownian-type hopping motions is optimized while foraging for a finite time in a supply patch of limited spatial size if the agent chooses turning angles taken from an exponential distribution with a specific stochastic intensity or ‘noise width’. Search strategies that lead to optimization is a topic of high current interest across many disciplines [D. Wolpert, W. MacReady, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation 1 (1997) 67].</description><subject>Algorithms</subject><subject>Animals</subject><subject>Biological Evolution</subject><subject>Computer Simulation</subject><subject>Daphnia - anatomy &amp; histology</subject><subject>Daphnia - physiology</subject><subject>Feeding Behavior - physiology</subject><subject>Freshwater</subject><subject>Locomotion</subject><subject>Models, Biological</subject><subject>Natural selection</subject><subject>Natural stochastic resonance</subject><subject>Optimal foraging</subject><subject>Pulicaria</subject><subject>Species Specificity</subject><subject>Zooplankton</subject><subject>Zooplankton - physiology</subject><issn>0025-5564</issn><issn>1879-3134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kDtPwzAURi0EgvL4ASzIE0wJ9zqJncCEylNCYoHZ8ivUpY1DnILg12PUSmxMdznf0dUh5BghR0B-Ps-XOuYMgOeIOWC5RSZYiyYrsCi3yQSAVVlV8XKP7Mc4B0CByHfJHoqCF4AwIdOnfvRLtaBtGNSr716p_qLfIfQL1b2NoaOffpz5jvZqNDMXL-jzzFGjoqOhpdeqn3VeHZKdVi2iO9rcA_Jye_M8vc8en-4eplePmSnLZsxaqyoN2jRMVJaBaRqLGpllTrO6aUptjRVCVEZAwevSgG1brnndFCVWQunigJytvf0Q3lcujnLpo3GL9KoLqyjruoBkQkzk6b-kgIoBr1kCcQ2aIcQ4uFb2Q8oxfEkE-dtYzmVqLH8bS0SZGqfNyUa-0ktn_xabqAm4XAMuxfjwbpDReNcZZ_3gzCht8P_ofwD8vYt0</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Garcia, Ricardo</creator><creator>Moss, Frank</creator><creator>Nihongi, Ai</creator><creator>Strickler, J. Rudi</creator><creator>Göller, Sebastian</creator><creator>Erdmann, Udo</creator><creator>Schimansky-Geier, Lutz</creator><creator>Sokolov, Igor M.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>P64</scope></search><sort><creationdate>20070601</creationdate><title>Optimal foraging by zooplankton within patches: The case of Daphnia</title><author>Garcia, Ricardo ; Moss, Frank ; Nihongi, Ai ; Strickler, J. Rudi ; Göller, Sebastian ; Erdmann, Udo ; Schimansky-Geier, Lutz ; Sokolov, Igor M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-fda5b0bc9275d20c99d1b12d2eb28994bdcd7775c703684c0dff6b68934157ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Biological Evolution</topic><topic>Computer Simulation</topic><topic>Daphnia - anatomy &amp; histology</topic><topic>Daphnia - physiology</topic><topic>Feeding Behavior - physiology</topic><topic>Freshwater</topic><topic>Locomotion</topic><topic>Models, Biological</topic><topic>Natural selection</topic><topic>Natural stochastic resonance</topic><topic>Optimal foraging</topic><topic>Pulicaria</topic><topic>Species Specificity</topic><topic>Zooplankton</topic><topic>Zooplankton - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, Ricardo</creatorcontrib><creatorcontrib>Moss, Frank</creatorcontrib><creatorcontrib>Nihongi, Ai</creatorcontrib><creatorcontrib>Strickler, J. Rudi</creatorcontrib><creatorcontrib>Göller, Sebastian</creatorcontrib><creatorcontrib>Erdmann, Udo</creatorcontrib><creatorcontrib>Schimansky-Geier, Lutz</creatorcontrib><creatorcontrib>Sokolov, Igor M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Mathematical biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia, Ricardo</au><au>Moss, Frank</au><au>Nihongi, Ai</au><au>Strickler, J. Rudi</au><au>Göller, Sebastian</au><au>Erdmann, Udo</au><au>Schimansky-Geier, Lutz</au><au>Sokolov, Igor M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal foraging by zooplankton within patches: The case of Daphnia</atitle><jtitle>Mathematical biosciences</jtitle><addtitle>Math Biosci</addtitle><date>2007-06-01</date><risdate>2007</risdate><volume>207</volume><issue>2</issue><spage>165</spage><epage>188</epage><pages>165-188</pages><issn>0025-5564</issn><eissn>1879-3134</eissn><abstract>The motions of many physical particles as well as living creatures are mediated by random influences or ‘noise’. One might expect that over evolutionary time scales internal random processes found in living systems display characteristics that maximize fitness. Here we focus on animal random search strategies [G.M. Viswanathan, S.V. Buldyrev, S. Havlin, M.G.E. Da Luz, E.P. Raposo, H.E. Stanley, Optimizing the success of random searches, Nature 401 (1999) 911–914; F. Bartumeus, J. Catalan, U.L. Fulco, M.L. Lyra, G.M. Viswanathan, Optimizing the encounter rate in biological interactions: Lévy versus Brownian stratagies, Phys. Rev. Lett. 88 (2002) 097901 and 89 (2002) 109902], and we describe experiments with the following Daphnia species: D. magna, D. galeata, D. lumholtzi, D. pulicaria, and D. pulex. We observe that the animals, while foraging for food, choose turning angles from distributions that can be described by exponential functions with a range of widths. This observation leads us to speculate and test the notion that this characteristic distribution of turning angles evolved in order to enhance survival. In the case of theoretical agents, some form of randomness is often introduced into search algorithms, especially when information regarding the sought object(s) is incomplete or even misleading. In the case of living animals, many studies have focused on search strategies that involve randomness [H.C. Berg, Random Walks in Biology, Princeton University, Princeton, New Jersey, 1993; A. Okubo, S.A. Levin (Eds.), Diffusion and Ecological Problems: Modern Perspectives, second ed., Springer, New York, 2001]. A simple theory based on stochastic differential equations of the motion backed up by a simulation shows that the collection of material (information, energy, food, supplies, etc.) by an agent executing Brownian-type hopping motions is optimized while foraging for a finite time in a supply patch of limited spatial size if the agent chooses turning angles taken from an exponential distribution with a specific stochastic intensity or ‘noise width’. Search strategies that lead to optimization is a topic of high current interest across many disciplines [D. Wolpert, W. MacReady, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation 1 (1997) 67].</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>17363010</pmid><doi>10.1016/j.mbs.2006.11.014</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5564
ispartof Mathematical biosciences, 2007-06, Vol.207 (2), p.165-188
issn 0025-5564
1879-3134
language eng
recordid cdi_proquest_miscellaneous_883028911
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
Animals
Biological Evolution
Computer Simulation
Daphnia - anatomy & histology
Daphnia - physiology
Feeding Behavior - physiology
Freshwater
Locomotion
Models, Biological
Natural selection
Natural stochastic resonance
Optimal foraging
Pulicaria
Species Specificity
Zooplankton
Zooplankton - physiology
title Optimal foraging by zooplankton within patches: The case of Daphnia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A25%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20foraging%20by%20zooplankton%20within%20patches:%20The%20case%20of%20Daphnia&rft.jtitle=Mathematical%20biosciences&rft.au=Garcia,%20Ricardo&rft.date=2007-06-01&rft.volume=207&rft.issue=2&rft.spage=165&rft.epage=188&rft.pages=165-188&rft.issn=0025-5564&rft.eissn=1879-3134&rft_id=info:doi/10.1016/j.mbs.2006.11.014&rft_dat=%3Cproquest_cross%3E70520682%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70520682&rft_id=info:pmid/17363010&rft_els_id=S0025556407000089&rfr_iscdi=true