Optimal foraging by zooplankton within patches: The case of Daphnia
The motions of many physical particles as well as living creatures are mediated by random influences or ‘noise’. One might expect that over evolutionary time scales internal random processes found in living systems display characteristics that maximize fitness. Here we focus on animal random search...
Gespeichert in:
Veröffentlicht in: | Mathematical biosciences 2007-06, Vol.207 (2), p.165-188 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 188 |
---|---|
container_issue | 2 |
container_start_page | 165 |
container_title | Mathematical biosciences |
container_volume | 207 |
creator | Garcia, Ricardo Moss, Frank Nihongi, Ai Strickler, J. Rudi Göller, Sebastian Erdmann, Udo Schimansky-Geier, Lutz Sokolov, Igor M. |
description | The motions of many physical particles as well as living creatures are mediated by random influences or ‘noise’. One might expect that over evolutionary time scales internal random processes found in living systems display characteristics that maximize fitness. Here we focus on animal random search strategies [G.M. Viswanathan, S.V. Buldyrev, S. Havlin, M.G.E. Da Luz, E.P. Raposo, H.E. Stanley, Optimizing the success of random searches, Nature 401 (1999) 911–914; F. Bartumeus, J. Catalan, U.L. Fulco, M.L. Lyra, G.M. Viswanathan, Optimizing the encounter rate in biological interactions: Lévy versus Brownian stratagies, Phys. Rev. Lett. 88 (2002) 097901 and 89 (2002) 109902], and we describe experiments with
the following
Daphnia species:
D. magna,
D. galeata,
D. lumholtzi,
D. pulicaria, and
D. pulex. We observe that the animals, while foraging for food, choose turning angles from distributions that can be described by exponential functions with a range of widths. This observation leads us to speculate and test the notion that this characteristic distribution of turning angles evolved in order to enhance survival. In the case of theoretical agents, some form of randomness is often introduced into search algorithms, especially when information regarding the sought object(s) is incomplete or even misleading. In the case of living animals, many studies have focused on search strategies that involve randomness [H.C. Berg, Random Walks in Biology, Princeton University, Princeton, New Jersey, 1993; A. Okubo, S.A. Levin (Eds.), Diffusion and Ecological Problems: Modern Perspectives, second ed., Springer, New York, 2001]. A simple theory based on stochastic differential equations of the motion backed up by a simulation shows that the collection of material (information, energy, food, supplies, etc.) by an agent executing Brownian-type hopping motions is optimized while foraging for a finite time in a supply patch of limited spatial size if the agent chooses turning angles taken from an exponential distribution with a specific stochastic intensity or ‘noise width’. Search strategies that lead to optimization is a topic of high current interest across many disciplines [D. Wolpert, W. MacReady, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation 1 (1997) 67]. |
doi_str_mv | 10.1016/j.mbs.2006.11.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883028911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0025556407000089</els_id><sourcerecordid>70520682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-fda5b0bc9275d20c99d1b12d2eb28994bdcd7775c703684c0dff6b68934157ab3</originalsourceid><addsrcrecordid>eNp9kDtPwzAURi0EgvL4ASzIE0wJ9zqJncCEylNCYoHZ8ivUpY1DnILg12PUSmxMdznf0dUh5BghR0B-Ps-XOuYMgOeIOWC5RSZYiyYrsCi3yQSAVVlV8XKP7Mc4B0CByHfJHoqCF4AwIdOnfvRLtaBtGNSr716p_qLfIfQL1b2NoaOffpz5jvZqNDMXL-jzzFGjoqOhpdeqn3VeHZKdVi2iO9rcA_Jye_M8vc8en-4eplePmSnLZsxaqyoN2jRMVJaBaRqLGpllTrO6aUptjRVCVEZAwevSgG1brnndFCVWQunigJytvf0Q3lcujnLpo3GL9KoLqyjruoBkQkzk6b-kgIoBr1kCcQ2aIcQ4uFb2Q8oxfEkE-dtYzmVqLH8bS0SZGqfNyUa-0ktn_xabqAm4XAMuxfjwbpDReNcZZ_3gzCht8P_ofwD8vYt0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70520682</pqid></control><display><type>article</type><title>Optimal foraging by zooplankton within patches: The case of Daphnia</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Garcia, Ricardo ; Moss, Frank ; Nihongi, Ai ; Strickler, J. Rudi ; Göller, Sebastian ; Erdmann, Udo ; Schimansky-Geier, Lutz ; Sokolov, Igor M.</creator><creatorcontrib>Garcia, Ricardo ; Moss, Frank ; Nihongi, Ai ; Strickler, J. Rudi ; Göller, Sebastian ; Erdmann, Udo ; Schimansky-Geier, Lutz ; Sokolov, Igor M.</creatorcontrib><description>The motions of many physical particles as well as living creatures are mediated by random influences or ‘noise’. One might expect that over evolutionary time scales internal random processes found in living systems display characteristics that maximize fitness. Here we focus on animal random search strategies [G.M. Viswanathan, S.V. Buldyrev, S. Havlin, M.G.E. Da Luz, E.P. Raposo, H.E. Stanley, Optimizing the success of random searches, Nature 401 (1999) 911–914; F. Bartumeus, J. Catalan, U.L. Fulco, M.L. Lyra, G.M. Viswanathan, Optimizing the encounter rate in biological interactions: Lévy versus Brownian stratagies, Phys. Rev. Lett. 88 (2002) 097901 and 89 (2002) 109902], and we describe experiments with
the following
Daphnia species:
D. magna,
D. galeata,
D. lumholtzi,
D. pulicaria, and
D. pulex. We observe that the animals, while foraging for food, choose turning angles from distributions that can be described by exponential functions with a range of widths. This observation leads us to speculate and test the notion that this characteristic distribution of turning angles evolved in order to enhance survival. In the case of theoretical agents, some form of randomness is often introduced into search algorithms, especially when information regarding the sought object(s) is incomplete or even misleading. In the case of living animals, many studies have focused on search strategies that involve randomness [H.C. Berg, Random Walks in Biology, Princeton University, Princeton, New Jersey, 1993; A. Okubo, S.A. Levin (Eds.), Diffusion and Ecological Problems: Modern Perspectives, second ed., Springer, New York, 2001]. A simple theory based on stochastic differential equations of the motion backed up by a simulation shows that the collection of material (information, energy, food, supplies, etc.) by an agent executing Brownian-type hopping motions is optimized while foraging for a finite time in a supply patch of limited spatial size if the agent chooses turning angles taken from an exponential distribution with a specific stochastic intensity or ‘noise width’. Search strategies that lead to optimization is a topic of high current interest across many disciplines [D. Wolpert, W. MacReady, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation 1 (1997) 67].</description><identifier>ISSN: 0025-5564</identifier><identifier>EISSN: 1879-3134</identifier><identifier>DOI: 10.1016/j.mbs.2006.11.014</identifier><identifier>PMID: 17363010</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Animals ; Biological Evolution ; Computer Simulation ; Daphnia - anatomy & histology ; Daphnia - physiology ; Feeding Behavior - physiology ; Freshwater ; Locomotion ; Models, Biological ; Natural selection ; Natural stochastic resonance ; Optimal foraging ; Pulicaria ; Species Specificity ; Zooplankton ; Zooplankton - physiology</subject><ispartof>Mathematical biosciences, 2007-06, Vol.207 (2), p.165-188</ispartof><rights>2007 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-fda5b0bc9275d20c99d1b12d2eb28994bdcd7775c703684c0dff6b68934157ab3</citedby><cites>FETCH-LOGICAL-c449t-fda5b0bc9275d20c99d1b12d2eb28994bdcd7775c703684c0dff6b68934157ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mbs.2006.11.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17363010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcia, Ricardo</creatorcontrib><creatorcontrib>Moss, Frank</creatorcontrib><creatorcontrib>Nihongi, Ai</creatorcontrib><creatorcontrib>Strickler, J. Rudi</creatorcontrib><creatorcontrib>Göller, Sebastian</creatorcontrib><creatorcontrib>Erdmann, Udo</creatorcontrib><creatorcontrib>Schimansky-Geier, Lutz</creatorcontrib><creatorcontrib>Sokolov, Igor M.</creatorcontrib><title>Optimal foraging by zooplankton within patches: The case of Daphnia</title><title>Mathematical biosciences</title><addtitle>Math Biosci</addtitle><description>The motions of many physical particles as well as living creatures are mediated by random influences or ‘noise’. One might expect that over evolutionary time scales internal random processes found in living systems display characteristics that maximize fitness. Here we focus on animal random search strategies [G.M. Viswanathan, S.V. Buldyrev, S. Havlin, M.G.E. Da Luz, E.P. Raposo, H.E. Stanley, Optimizing the success of random searches, Nature 401 (1999) 911–914; F. Bartumeus, J. Catalan, U.L. Fulco, M.L. Lyra, G.M. Viswanathan, Optimizing the encounter rate in biological interactions: Lévy versus Brownian stratagies, Phys. Rev. Lett. 88 (2002) 097901 and 89 (2002) 109902], and we describe experiments with
the following
Daphnia species:
D. magna,
D. galeata,
D. lumholtzi,
D. pulicaria, and
D. pulex. We observe that the animals, while foraging for food, choose turning angles from distributions that can be described by exponential functions with a range of widths. This observation leads us to speculate and test the notion that this characteristic distribution of turning angles evolved in order to enhance survival. In the case of theoretical agents, some form of randomness is often introduced into search algorithms, especially when information regarding the sought object(s) is incomplete or even misleading. In the case of living animals, many studies have focused on search strategies that involve randomness [H.C. Berg, Random Walks in Biology, Princeton University, Princeton, New Jersey, 1993; A. Okubo, S.A. Levin (Eds.), Diffusion and Ecological Problems: Modern Perspectives, second ed., Springer, New York, 2001]. A simple theory based on stochastic differential equations of the motion backed up by a simulation shows that the collection of material (information, energy, food, supplies, etc.) by an agent executing Brownian-type hopping motions is optimized while foraging for a finite time in a supply patch of limited spatial size if the agent chooses turning angles taken from an exponential distribution with a specific stochastic intensity or ‘noise width’. Search strategies that lead to optimization is a topic of high current interest across many disciplines [D. Wolpert, W. MacReady, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation 1 (1997) 67].</description><subject>Algorithms</subject><subject>Animals</subject><subject>Biological Evolution</subject><subject>Computer Simulation</subject><subject>Daphnia - anatomy & histology</subject><subject>Daphnia - physiology</subject><subject>Feeding Behavior - physiology</subject><subject>Freshwater</subject><subject>Locomotion</subject><subject>Models, Biological</subject><subject>Natural selection</subject><subject>Natural stochastic resonance</subject><subject>Optimal foraging</subject><subject>Pulicaria</subject><subject>Species Specificity</subject><subject>Zooplankton</subject><subject>Zooplankton - physiology</subject><issn>0025-5564</issn><issn>1879-3134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kDtPwzAURi0EgvL4ASzIE0wJ9zqJncCEylNCYoHZ8ivUpY1DnILg12PUSmxMdznf0dUh5BghR0B-Ps-XOuYMgOeIOWC5RSZYiyYrsCi3yQSAVVlV8XKP7Mc4B0CByHfJHoqCF4AwIdOnfvRLtaBtGNSr716p_qLfIfQL1b2NoaOffpz5jvZqNDMXL-jzzFGjoqOhpdeqn3VeHZKdVi2iO9rcA_Jye_M8vc8en-4eplePmSnLZsxaqyoN2jRMVJaBaRqLGpllTrO6aUptjRVCVEZAwevSgG1brnndFCVWQunigJytvf0Q3lcujnLpo3GL9KoLqyjruoBkQkzk6b-kgIoBr1kCcQ2aIcQ4uFb2Q8oxfEkE-dtYzmVqLH8bS0SZGqfNyUa-0ktn_xabqAm4XAMuxfjwbpDReNcZZ_3gzCht8P_ofwD8vYt0</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Garcia, Ricardo</creator><creator>Moss, Frank</creator><creator>Nihongi, Ai</creator><creator>Strickler, J. Rudi</creator><creator>Göller, Sebastian</creator><creator>Erdmann, Udo</creator><creator>Schimansky-Geier, Lutz</creator><creator>Sokolov, Igor M.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>P64</scope></search><sort><creationdate>20070601</creationdate><title>Optimal foraging by zooplankton within patches: The case of Daphnia</title><author>Garcia, Ricardo ; Moss, Frank ; Nihongi, Ai ; Strickler, J. Rudi ; Göller, Sebastian ; Erdmann, Udo ; Schimansky-Geier, Lutz ; Sokolov, Igor M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-fda5b0bc9275d20c99d1b12d2eb28994bdcd7775c703684c0dff6b68934157ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Biological Evolution</topic><topic>Computer Simulation</topic><topic>Daphnia - anatomy & histology</topic><topic>Daphnia - physiology</topic><topic>Feeding Behavior - physiology</topic><topic>Freshwater</topic><topic>Locomotion</topic><topic>Models, Biological</topic><topic>Natural selection</topic><topic>Natural stochastic resonance</topic><topic>Optimal foraging</topic><topic>Pulicaria</topic><topic>Species Specificity</topic><topic>Zooplankton</topic><topic>Zooplankton - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, Ricardo</creatorcontrib><creatorcontrib>Moss, Frank</creatorcontrib><creatorcontrib>Nihongi, Ai</creatorcontrib><creatorcontrib>Strickler, J. Rudi</creatorcontrib><creatorcontrib>Göller, Sebastian</creatorcontrib><creatorcontrib>Erdmann, Udo</creatorcontrib><creatorcontrib>Schimansky-Geier, Lutz</creatorcontrib><creatorcontrib>Sokolov, Igor M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Mathematical biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia, Ricardo</au><au>Moss, Frank</au><au>Nihongi, Ai</au><au>Strickler, J. Rudi</au><au>Göller, Sebastian</au><au>Erdmann, Udo</au><au>Schimansky-Geier, Lutz</au><au>Sokolov, Igor M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal foraging by zooplankton within patches: The case of Daphnia</atitle><jtitle>Mathematical biosciences</jtitle><addtitle>Math Biosci</addtitle><date>2007-06-01</date><risdate>2007</risdate><volume>207</volume><issue>2</issue><spage>165</spage><epage>188</epage><pages>165-188</pages><issn>0025-5564</issn><eissn>1879-3134</eissn><abstract>The motions of many physical particles as well as living creatures are mediated by random influences or ‘noise’. One might expect that over evolutionary time scales internal random processes found in living systems display characteristics that maximize fitness. Here we focus on animal random search strategies [G.M. Viswanathan, S.V. Buldyrev, S. Havlin, M.G.E. Da Luz, E.P. Raposo, H.E. Stanley, Optimizing the success of random searches, Nature 401 (1999) 911–914; F. Bartumeus, J. Catalan, U.L. Fulco, M.L. Lyra, G.M. Viswanathan, Optimizing the encounter rate in biological interactions: Lévy versus Brownian stratagies, Phys. Rev. Lett. 88 (2002) 097901 and 89 (2002) 109902], and we describe experiments with
the following
Daphnia species:
D. magna,
D. galeata,
D. lumholtzi,
D. pulicaria, and
D. pulex. We observe that the animals, while foraging for food, choose turning angles from distributions that can be described by exponential functions with a range of widths. This observation leads us to speculate and test the notion that this characteristic distribution of turning angles evolved in order to enhance survival. In the case of theoretical agents, some form of randomness is often introduced into search algorithms, especially when information regarding the sought object(s) is incomplete or even misleading. In the case of living animals, many studies have focused on search strategies that involve randomness [H.C. Berg, Random Walks in Biology, Princeton University, Princeton, New Jersey, 1993; A. Okubo, S.A. Levin (Eds.), Diffusion and Ecological Problems: Modern Perspectives, second ed., Springer, New York, 2001]. A simple theory based on stochastic differential equations of the motion backed up by a simulation shows that the collection of material (information, energy, food, supplies, etc.) by an agent executing Brownian-type hopping motions is optimized while foraging for a finite time in a supply patch of limited spatial size if the agent chooses turning angles taken from an exponential distribution with a specific stochastic intensity or ‘noise width’. Search strategies that lead to optimization is a topic of high current interest across many disciplines [D. Wolpert, W. MacReady, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation 1 (1997) 67].</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>17363010</pmid><doi>10.1016/j.mbs.2006.11.014</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5564 |
ispartof | Mathematical biosciences, 2007-06, Vol.207 (2), p.165-188 |
issn | 0025-5564 1879-3134 |
language | eng |
recordid | cdi_proquest_miscellaneous_883028911 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Algorithms Animals Biological Evolution Computer Simulation Daphnia - anatomy & histology Daphnia - physiology Feeding Behavior - physiology Freshwater Locomotion Models, Biological Natural selection Natural stochastic resonance Optimal foraging Pulicaria Species Specificity Zooplankton Zooplankton - physiology |
title | Optimal foraging by zooplankton within patches: The case of Daphnia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A25%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20foraging%20by%20zooplankton%20within%20patches:%20The%20case%20of%20Daphnia&rft.jtitle=Mathematical%20biosciences&rft.au=Garcia,%20Ricardo&rft.date=2007-06-01&rft.volume=207&rft.issue=2&rft.spage=165&rft.epage=188&rft.pages=165-188&rft.issn=0025-5564&rft.eissn=1879-3134&rft_id=info:doi/10.1016/j.mbs.2006.11.014&rft_dat=%3Cproquest_cross%3E70520682%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70520682&rft_id=info:pmid/17363010&rft_els_id=S0025556407000089&rfr_iscdi=true |