Angiogenesis and osteogenesis enhanced by bFGF ex vivo gene therapy for bone tissue engineering in reconstruction of calvarial defects

Reconstruction of bone defects by tissue engineered substitutes requires coordinated coupling between osteogenesis and angiogenesis. Basic fibroblast growth factor (bFGF or FGF‐2) is a protein which acts actively in osteogenesis and angiogenesis during skeletal healing and development. It is hypothe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2011-03, Vol.96A (3), p.543-551
Hauptverfasser: Qu, Dan, Li, Jihua, Li, Yubao, Gao, Ying, Zuo, Yi, Hsu, Yuchun, Hu, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 551
container_issue 3
container_start_page 543
container_title Journal of biomedical materials research. Part A
container_volume 96A
creator Qu, Dan
Li, Jihua
Li, Yubao
Gao, Ying
Zuo, Yi
Hsu, Yuchun
Hu, Jing
description Reconstruction of bone defects by tissue engineered substitutes requires coordinated coupling between osteogenesis and angiogenesis. Basic fibroblast growth factor (bFGF or FGF‐2) is a protein which acts actively in osteogenesis and angiogenesis during skeletal healing and development. It is hypothesized that BMSCs transfected with bFGF can directly stimulate regeneration of vascular tissue, and subsequently enhance osseous formation and remodeling after implantation of the tissue engineered bone. This study was designed to examine the impact of bFGF‐BMSCs, seeded on nano‐hydroxyapatite/polyamide66 (n‐HA/PA66) composite scaffold, to enhance angiogenesis and osteogenesis in a calvarial critical‐sized defect model in rats. To investigate the vascularization and bone formation of tissue engineered bone, the substrate was removed and processed for immunohistochemical, scanning electron microscopic examinations (SEM), reverse transcriptase‐polymerase chain reaction (RT‐PCR), dual energy X‐ray absorptiometry (DEXA), microvessels counting, and new bone volume assay. The results demonstrate that bFGF mediated ex vivo gene transfer based on BMSCs can accelerate vascularization and bone regeneration on these composite scaffolds. The n‐HA/PA66 scaffold combined with the bFGF‐BMSCs may mimic the natural process of osteogenesis during repair of defect by tissue engineered bone. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A:, 2011.
doi_str_mv 10.1002/jbm.a.33009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883028466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>883028466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4629-f7e5900af25fd8a64f1e88a99d0b02d44486e9b949b3560e4605af2196aea44f3</originalsourceid><addsrcrecordid>eNqFkktvEzEUhUcIRB-wYo-8QSzQBI9fsZdtRVKqUliAys7yzFynLhM72DNp8wf43XiaNOzoytbVd86918dF8abCkwpj8vG2Xk7MhFKM1bPisOKclEwJ_ny8M1VSosRBcZTSbYYF5uRlcUAqwhmV4rD4c-IXLizAQ3IJGd-ikHrYF8DfGN9Ai-oNqmfzGYJ7tHbrgEYA9TcQzWqDbIioDmPBpTRAVi2cB4jOL5DzKEITfOrj0PQueBQsaky3NtGZDrVgoenTq-KFNV2C17vzuPgx-_T97Ly8_Dr_fHZyWTZMEFXaKXCFsbGE21YawWwFUhqlWlxj0jLGpABVK6ZqygUGlvfNcKWEAcOYpcfF-63vKobfA6ReL11qoOuMhzAkLSXFRDIhniaFGkcR_GmSCamm8sHzw5ZsYkgpgtWr6JYmbnSF9Zilzllqox-yzPTbne9QL6Hds4_hZeDdDjApv6iNOSqX_nFUVeMumau23J3rYPO_nvri9Mtj83Krcfk73O81Jv7SYkqnXF9fzfWFmn27Ij-v9Tn9C8HgxxU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>846897866</pqid></control><display><type>article</type><title>Angiogenesis and osteogenesis enhanced by bFGF ex vivo gene therapy for bone tissue engineering in reconstruction of calvarial defects</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Qu, Dan ; Li, Jihua ; Li, Yubao ; Gao, Ying ; Zuo, Yi ; Hsu, Yuchun ; Hu, Jing</creator><creatorcontrib>Qu, Dan ; Li, Jihua ; Li, Yubao ; Gao, Ying ; Zuo, Yi ; Hsu, Yuchun ; Hu, Jing</creatorcontrib><description>Reconstruction of bone defects by tissue engineered substitutes requires coordinated coupling between osteogenesis and angiogenesis. Basic fibroblast growth factor (bFGF or FGF‐2) is a protein which acts actively in osteogenesis and angiogenesis during skeletal healing and development. It is hypothesized that BMSCs transfected with bFGF can directly stimulate regeneration of vascular tissue, and subsequently enhance osseous formation and remodeling after implantation of the tissue engineered bone. This study was designed to examine the impact of bFGF‐BMSCs, seeded on nano‐hydroxyapatite/polyamide66 (n‐HA/PA66) composite scaffold, to enhance angiogenesis and osteogenesis in a calvarial critical‐sized defect model in rats. To investigate the vascularization and bone formation of tissue engineered bone, the substrate was removed and processed for immunohistochemical, scanning electron microscopic examinations (SEM), reverse transcriptase‐polymerase chain reaction (RT‐PCR), dual energy X‐ray absorptiometry (DEXA), microvessels counting, and new bone volume assay. The results demonstrate that bFGF mediated ex vivo gene transfer based on BMSCs can accelerate vascularization and bone regeneration on these composite scaffolds. The n‐HA/PA66 scaffold combined with the bFGF‐BMSCs may mimic the natural process of osteogenesis during repair of defect by tissue engineered bone. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A:, 2011.</description><identifier>ISSN: 1549-3296</identifier><identifier>ISSN: 1552-4965</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.33009</identifier><identifier>PMID: 21254386</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Absorptiometry, Photon ; Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; angiogenesis ; Animals ; Applied cell therapy and gene therapy ; bFGF ; Biological and medical sciences ; Biotechnology ; BMSCs ; Bone Density - drug effects ; Bone Marrow Cells - cytology ; Durapatite - pharmacology ; Female ; Fibroblast Growth Factor 2 - genetics ; Fibroblast Growth Factor 2 - therapeutic use ; Fundamental and applied biological sciences. Psychology ; Genetic Therapy ; Green Fluorescent Proteins - metabolism ; Health. Pharmaceutical industry ; Implants, Experimental ; Industrial applications and implications. Economical aspects ; Medical sciences ; Miscellaneous ; nano-hydroxyapatite/polyamide66 (n-HA/PA66) ; Neovascularization, Physiologic - drug effects ; osteogenesis ; Osteogenesis - drug effects ; Rats ; Rats, Sprague-Dawley ; Skull - diagnostic imaging ; Skull - drug effects ; Skull - pathology ; Stromal Cells - cytology ; Stromal Cells - drug effects ; Stromal Cells - metabolism ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology. Biomaterials. Equipments ; Tissue Engineering - methods ; Tissue Scaffolds ; Transduction, Genetic ; Transfusions. Complications. Transfusion reactions. Cell and gene therapy</subject><ispartof>Journal of biomedical materials research. Part A, 2011-03, Vol.96A (3), p.543-551</ispartof><rights>Copyright © 2010 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4629-f7e5900af25fd8a64f1e88a99d0b02d44486e9b949b3560e4605af2196aea44f3</citedby><cites>FETCH-LOGICAL-c4629-f7e5900af25fd8a64f1e88a99d0b02d44486e9b949b3560e4605af2196aea44f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.33009$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.33009$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23912846$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21254386$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qu, Dan</creatorcontrib><creatorcontrib>Li, Jihua</creatorcontrib><creatorcontrib>Li, Yubao</creatorcontrib><creatorcontrib>Gao, Ying</creatorcontrib><creatorcontrib>Zuo, Yi</creatorcontrib><creatorcontrib>Hsu, Yuchun</creatorcontrib><creatorcontrib>Hu, Jing</creatorcontrib><title>Angiogenesis and osteogenesis enhanced by bFGF ex vivo gene therapy for bone tissue engineering in reconstruction of calvarial defects</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>Reconstruction of bone defects by tissue engineered substitutes requires coordinated coupling between osteogenesis and angiogenesis. Basic fibroblast growth factor (bFGF or FGF‐2) is a protein which acts actively in osteogenesis and angiogenesis during skeletal healing and development. It is hypothesized that BMSCs transfected with bFGF can directly stimulate regeneration of vascular tissue, and subsequently enhance osseous formation and remodeling after implantation of the tissue engineered bone. This study was designed to examine the impact of bFGF‐BMSCs, seeded on nano‐hydroxyapatite/polyamide66 (n‐HA/PA66) composite scaffold, to enhance angiogenesis and osteogenesis in a calvarial critical‐sized defect model in rats. To investigate the vascularization and bone formation of tissue engineered bone, the substrate was removed and processed for immunohistochemical, scanning electron microscopic examinations (SEM), reverse transcriptase‐polymerase chain reaction (RT‐PCR), dual energy X‐ray absorptiometry (DEXA), microvessels counting, and new bone volume assay. The results demonstrate that bFGF mediated ex vivo gene transfer based on BMSCs can accelerate vascularization and bone regeneration on these composite scaffolds. The n‐HA/PA66 scaffold combined with the bFGF‐BMSCs may mimic the natural process of osteogenesis during repair of defect by tissue engineered bone. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A:, 2011.</description><subject>Absorptiometry, Photon</subject><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>angiogenesis</subject><subject>Animals</subject><subject>Applied cell therapy and gene therapy</subject><subject>bFGF</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>BMSCs</subject><subject>Bone Density - drug effects</subject><subject>Bone Marrow Cells - cytology</subject><subject>Durapatite - pharmacology</subject><subject>Female</subject><subject>Fibroblast Growth Factor 2 - genetics</subject><subject>Fibroblast Growth Factor 2 - therapeutic use</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic Therapy</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Health. Pharmaceutical industry</subject><subject>Implants, Experimental</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Medical sciences</subject><subject>Miscellaneous</subject><subject>nano-hydroxyapatite/polyamide66 (n-HA/PA66)</subject><subject>Neovascularization, Physiologic - drug effects</subject><subject>osteogenesis</subject><subject>Osteogenesis - drug effects</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Skull - diagnostic imaging</subject><subject>Skull - drug effects</subject><subject>Skull - pathology</subject><subject>Stromal Cells - cytology</subject><subject>Stromal Cells - drug effects</subject><subject>Stromal Cells - metabolism</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><subject>Transduction, Genetic</subject><subject>Transfusions. Complications. Transfusion reactions. Cell and gene therapy</subject><issn>1549-3296</issn><issn>1552-4965</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkktvEzEUhUcIRB-wYo-8QSzQBI9fsZdtRVKqUliAys7yzFynLhM72DNp8wf43XiaNOzoytbVd86918dF8abCkwpj8vG2Xk7MhFKM1bPisOKclEwJ_ny8M1VSosRBcZTSbYYF5uRlcUAqwhmV4rD4c-IXLizAQ3IJGd-ikHrYF8DfGN9Ai-oNqmfzGYJ7tHbrgEYA9TcQzWqDbIioDmPBpTRAVi2cB4jOL5DzKEITfOrj0PQueBQsaky3NtGZDrVgoenTq-KFNV2C17vzuPgx-_T97Ly8_Dr_fHZyWTZMEFXaKXCFsbGE21YawWwFUhqlWlxj0jLGpABVK6ZqygUGlvfNcKWEAcOYpcfF-63vKobfA6ReL11qoOuMhzAkLSXFRDIhniaFGkcR_GmSCamm8sHzw5ZsYkgpgtWr6JYmbnSF9Zilzllqox-yzPTbne9QL6Hds4_hZeDdDjApv6iNOSqX_nFUVeMumau23J3rYPO_nvri9Mtj83Krcfk73O81Jv7SYkqnXF9fzfWFmn27Ij-v9Tn9C8HgxxU</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Qu, Dan</creator><creator>Li, Jihua</creator><creator>Li, Yubao</creator><creator>Gao, Ying</creator><creator>Zuo, Yi</creator><creator>Hsu, Yuchun</creator><creator>Hu, Jing</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7QP</scope><scope>RC3</scope></search><sort><creationdate>20110301</creationdate><title>Angiogenesis and osteogenesis enhanced by bFGF ex vivo gene therapy for bone tissue engineering in reconstruction of calvarial defects</title><author>Qu, Dan ; Li, Jihua ; Li, Yubao ; Gao, Ying ; Zuo, Yi ; Hsu, Yuchun ; Hu, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4629-f7e5900af25fd8a64f1e88a99d0b02d44486e9b949b3560e4605af2196aea44f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Absorptiometry, Photon</topic><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>angiogenesis</topic><topic>Animals</topic><topic>Applied cell therapy and gene therapy</topic><topic>bFGF</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>BMSCs</topic><topic>Bone Density - drug effects</topic><topic>Bone Marrow Cells - cytology</topic><topic>Durapatite - pharmacology</topic><topic>Female</topic><topic>Fibroblast Growth Factor 2 - genetics</topic><topic>Fibroblast Growth Factor 2 - therapeutic use</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic Therapy</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Health. Pharmaceutical industry</topic><topic>Implants, Experimental</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Medical sciences</topic><topic>Miscellaneous</topic><topic>nano-hydroxyapatite/polyamide66 (n-HA/PA66)</topic><topic>Neovascularization, Physiologic - drug effects</topic><topic>osteogenesis</topic><topic>Osteogenesis - drug effects</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Skull - diagnostic imaging</topic><topic>Skull - drug effects</topic><topic>Skull - pathology</topic><topic>Stromal Cells - cytology</topic><topic>Stromal Cells - drug effects</topic><topic>Stromal Cells - metabolism</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><topic>Transduction, Genetic</topic><topic>Transfusions. Complications. Transfusion reactions. Cell and gene therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qu, Dan</creatorcontrib><creatorcontrib>Li, Jihua</creatorcontrib><creatorcontrib>Li, Yubao</creatorcontrib><creatorcontrib>Gao, Ying</creatorcontrib><creatorcontrib>Zuo, Yi</creatorcontrib><creatorcontrib>Hsu, Yuchun</creatorcontrib><creatorcontrib>Hu, Jing</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qu, Dan</au><au>Li, Jihua</au><au>Li, Yubao</au><au>Gao, Ying</au><au>Zuo, Yi</au><au>Hsu, Yuchun</au><au>Hu, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Angiogenesis and osteogenesis enhanced by bFGF ex vivo gene therapy for bone tissue engineering in reconstruction of calvarial defects</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>96A</volume><issue>3</issue><spage>543</spage><epage>551</epage><pages>543-551</pages><issn>1549-3296</issn><issn>1552-4965</issn><eissn>1552-4965</eissn><abstract>Reconstruction of bone defects by tissue engineered substitutes requires coordinated coupling between osteogenesis and angiogenesis. Basic fibroblast growth factor (bFGF or FGF‐2) is a protein which acts actively in osteogenesis and angiogenesis during skeletal healing and development. It is hypothesized that BMSCs transfected with bFGF can directly stimulate regeneration of vascular tissue, and subsequently enhance osseous formation and remodeling after implantation of the tissue engineered bone. This study was designed to examine the impact of bFGF‐BMSCs, seeded on nano‐hydroxyapatite/polyamide66 (n‐HA/PA66) composite scaffold, to enhance angiogenesis and osteogenesis in a calvarial critical‐sized defect model in rats. To investigate the vascularization and bone formation of tissue engineered bone, the substrate was removed and processed for immunohistochemical, scanning electron microscopic examinations (SEM), reverse transcriptase‐polymerase chain reaction (RT‐PCR), dual energy X‐ray absorptiometry (DEXA), microvessels counting, and new bone volume assay. The results demonstrate that bFGF mediated ex vivo gene transfer based on BMSCs can accelerate vascularization and bone regeneration on these composite scaffolds. The n‐HA/PA66 scaffold combined with the bFGF‐BMSCs may mimic the natural process of osteogenesis during repair of defect by tissue engineered bone. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A:, 2011.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21254386</pmid><doi>10.1002/jbm.a.33009</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2011-03, Vol.96A (3), p.543-551
issn 1549-3296
1552-4965
1552-4965
language eng
recordid cdi_proquest_miscellaneous_883028466
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Absorptiometry, Photon
Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
angiogenesis
Animals
Applied cell therapy and gene therapy
bFGF
Biological and medical sciences
Biotechnology
BMSCs
Bone Density - drug effects
Bone Marrow Cells - cytology
Durapatite - pharmacology
Female
Fibroblast Growth Factor 2 - genetics
Fibroblast Growth Factor 2 - therapeutic use
Fundamental and applied biological sciences. Psychology
Genetic Therapy
Green Fluorescent Proteins - metabolism
Health. Pharmaceutical industry
Implants, Experimental
Industrial applications and implications. Economical aspects
Medical sciences
Miscellaneous
nano-hydroxyapatite/polyamide66 (n-HA/PA66)
Neovascularization, Physiologic - drug effects
osteogenesis
Osteogenesis - drug effects
Rats
Rats, Sprague-Dawley
Skull - diagnostic imaging
Skull - drug effects
Skull - pathology
Stromal Cells - cytology
Stromal Cells - drug effects
Stromal Cells - metabolism
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Technology. Biomaterials. Equipments
Tissue Engineering - methods
Tissue Scaffolds
Transduction, Genetic
Transfusions. Complications. Transfusion reactions. Cell and gene therapy
title Angiogenesis and osteogenesis enhanced by bFGF ex vivo gene therapy for bone tissue engineering in reconstruction of calvarial defects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A10%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Angiogenesis%20and%20osteogenesis%20enhanced%20by%20bFGF%20ex%20vivo%20gene%20therapy%20for%20bone%20tissue%20engineering%20in%20reconstruction%20of%20calvarial%20defects&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Qu,%20Dan&rft.date=2011-03-01&rft.volume=96A&rft.issue=3&rft.spage=543&rft.epage=551&rft.pages=543-551&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.33009&rft_dat=%3Cproquest_cross%3E883028466%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=846897866&rft_id=info:pmid/21254386&rfr_iscdi=true