Angiogenesis and osteogenesis enhanced by bFGF ex vivo gene therapy for bone tissue engineering in reconstruction of calvarial defects
Reconstruction of bone defects by tissue engineered substitutes requires coordinated coupling between osteogenesis and angiogenesis. Basic fibroblast growth factor (bFGF or FGF‐2) is a protein which acts actively in osteogenesis and angiogenesis during skeletal healing and development. It is hypothe...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part A 2011-03, Vol.96A (3), p.543-551 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 551 |
---|---|
container_issue | 3 |
container_start_page | 543 |
container_title | Journal of biomedical materials research. Part A |
container_volume | 96A |
creator | Qu, Dan Li, Jihua Li, Yubao Gao, Ying Zuo, Yi Hsu, Yuchun Hu, Jing |
description | Reconstruction of bone defects by tissue engineered substitutes requires coordinated coupling between osteogenesis and angiogenesis. Basic fibroblast growth factor (bFGF or FGF‐2) is a protein which acts actively in osteogenesis and angiogenesis during skeletal healing and development. It is hypothesized that BMSCs transfected with bFGF can directly stimulate regeneration of vascular tissue, and subsequently enhance osseous formation and remodeling after implantation of the tissue engineered bone. This study was designed to examine the impact of bFGF‐BMSCs, seeded on nano‐hydroxyapatite/polyamide66 (n‐HA/PA66) composite scaffold, to enhance angiogenesis and osteogenesis in a calvarial critical‐sized defect model in rats. To investigate the vascularization and bone formation of tissue engineered bone, the substrate was removed and processed for immunohistochemical, scanning electron microscopic examinations (SEM), reverse transcriptase‐polymerase chain reaction (RT‐PCR), dual energy X‐ray absorptiometry (DEXA), microvessels counting, and new bone volume assay. The results demonstrate that bFGF mediated ex vivo gene transfer based on BMSCs can accelerate vascularization and bone regeneration on these composite scaffolds. The n‐HA/PA66 scaffold combined with the bFGF‐BMSCs may mimic the natural process of osteogenesis during repair of defect by tissue engineered bone. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A:, 2011. |
doi_str_mv | 10.1002/jbm.a.33009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883028466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>883028466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4629-f7e5900af25fd8a64f1e88a99d0b02d44486e9b949b3560e4605af2196aea44f3</originalsourceid><addsrcrecordid>eNqFkktvEzEUhUcIRB-wYo-8QSzQBI9fsZdtRVKqUliAys7yzFynLhM72DNp8wf43XiaNOzoytbVd86918dF8abCkwpj8vG2Xk7MhFKM1bPisOKclEwJ_ny8M1VSosRBcZTSbYYF5uRlcUAqwhmV4rD4c-IXLizAQ3IJGd-ikHrYF8DfGN9Ai-oNqmfzGYJ7tHbrgEYA9TcQzWqDbIioDmPBpTRAVi2cB4jOL5DzKEITfOrj0PQueBQsaky3NtGZDrVgoenTq-KFNV2C17vzuPgx-_T97Ly8_Dr_fHZyWTZMEFXaKXCFsbGE21YawWwFUhqlWlxj0jLGpABVK6ZqygUGlvfNcKWEAcOYpcfF-63vKobfA6ReL11qoOuMhzAkLSXFRDIhniaFGkcR_GmSCamm8sHzw5ZsYkgpgtWr6JYmbnSF9Zilzllqox-yzPTbne9QL6Hds4_hZeDdDjApv6iNOSqX_nFUVeMumau23J3rYPO_nvri9Mtj83Krcfk73O81Jv7SYkqnXF9fzfWFmn27Ij-v9Tn9C8HgxxU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>846897866</pqid></control><display><type>article</type><title>Angiogenesis and osteogenesis enhanced by bFGF ex vivo gene therapy for bone tissue engineering in reconstruction of calvarial defects</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Qu, Dan ; Li, Jihua ; Li, Yubao ; Gao, Ying ; Zuo, Yi ; Hsu, Yuchun ; Hu, Jing</creator><creatorcontrib>Qu, Dan ; Li, Jihua ; Li, Yubao ; Gao, Ying ; Zuo, Yi ; Hsu, Yuchun ; Hu, Jing</creatorcontrib><description>Reconstruction of bone defects by tissue engineered substitutes requires coordinated coupling between osteogenesis and angiogenesis. Basic fibroblast growth factor (bFGF or FGF‐2) is a protein which acts actively in osteogenesis and angiogenesis during skeletal healing and development. It is hypothesized that BMSCs transfected with bFGF can directly stimulate regeneration of vascular tissue, and subsequently enhance osseous formation and remodeling after implantation of the tissue engineered bone. This study was designed to examine the impact of bFGF‐BMSCs, seeded on nano‐hydroxyapatite/polyamide66 (n‐HA/PA66) composite scaffold, to enhance angiogenesis and osteogenesis in a calvarial critical‐sized defect model in rats. To investigate the vascularization and bone formation of tissue engineered bone, the substrate was removed and processed for immunohistochemical, scanning electron microscopic examinations (SEM), reverse transcriptase‐polymerase chain reaction (RT‐PCR), dual energy X‐ray absorptiometry (DEXA), microvessels counting, and new bone volume assay. The results demonstrate that bFGF mediated ex vivo gene transfer based on BMSCs can accelerate vascularization and bone regeneration on these composite scaffolds. The n‐HA/PA66 scaffold combined with the bFGF‐BMSCs may mimic the natural process of osteogenesis during repair of defect by tissue engineered bone. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A:, 2011.</description><identifier>ISSN: 1549-3296</identifier><identifier>ISSN: 1552-4965</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.33009</identifier><identifier>PMID: 21254386</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Absorptiometry, Photon ; Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; angiogenesis ; Animals ; Applied cell therapy and gene therapy ; bFGF ; Biological and medical sciences ; Biotechnology ; BMSCs ; Bone Density - drug effects ; Bone Marrow Cells - cytology ; Durapatite - pharmacology ; Female ; Fibroblast Growth Factor 2 - genetics ; Fibroblast Growth Factor 2 - therapeutic use ; Fundamental and applied biological sciences. Psychology ; Genetic Therapy ; Green Fluorescent Proteins - metabolism ; Health. Pharmaceutical industry ; Implants, Experimental ; Industrial applications and implications. Economical aspects ; Medical sciences ; Miscellaneous ; nano-hydroxyapatite/polyamide66 (n-HA/PA66) ; Neovascularization, Physiologic - drug effects ; osteogenesis ; Osteogenesis - drug effects ; Rats ; Rats, Sprague-Dawley ; Skull - diagnostic imaging ; Skull - drug effects ; Skull - pathology ; Stromal Cells - cytology ; Stromal Cells - drug effects ; Stromal Cells - metabolism ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology. Biomaterials. Equipments ; Tissue Engineering - methods ; Tissue Scaffolds ; Transduction, Genetic ; Transfusions. Complications. Transfusion reactions. Cell and gene therapy</subject><ispartof>Journal of biomedical materials research. Part A, 2011-03, Vol.96A (3), p.543-551</ispartof><rights>Copyright © 2010 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4629-f7e5900af25fd8a64f1e88a99d0b02d44486e9b949b3560e4605af2196aea44f3</citedby><cites>FETCH-LOGICAL-c4629-f7e5900af25fd8a64f1e88a99d0b02d44486e9b949b3560e4605af2196aea44f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.33009$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.33009$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23912846$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21254386$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qu, Dan</creatorcontrib><creatorcontrib>Li, Jihua</creatorcontrib><creatorcontrib>Li, Yubao</creatorcontrib><creatorcontrib>Gao, Ying</creatorcontrib><creatorcontrib>Zuo, Yi</creatorcontrib><creatorcontrib>Hsu, Yuchun</creatorcontrib><creatorcontrib>Hu, Jing</creatorcontrib><title>Angiogenesis and osteogenesis enhanced by bFGF ex vivo gene therapy for bone tissue engineering in reconstruction of calvarial defects</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>Reconstruction of bone defects by tissue engineered substitutes requires coordinated coupling between osteogenesis and angiogenesis. Basic fibroblast growth factor (bFGF or FGF‐2) is a protein which acts actively in osteogenesis and angiogenesis during skeletal healing and development. It is hypothesized that BMSCs transfected with bFGF can directly stimulate regeneration of vascular tissue, and subsequently enhance osseous formation and remodeling after implantation of the tissue engineered bone. This study was designed to examine the impact of bFGF‐BMSCs, seeded on nano‐hydroxyapatite/polyamide66 (n‐HA/PA66) composite scaffold, to enhance angiogenesis and osteogenesis in a calvarial critical‐sized defect model in rats. To investigate the vascularization and bone formation of tissue engineered bone, the substrate was removed and processed for immunohistochemical, scanning electron microscopic examinations (SEM), reverse transcriptase‐polymerase chain reaction (RT‐PCR), dual energy X‐ray absorptiometry (DEXA), microvessels counting, and new bone volume assay. The results demonstrate that bFGF mediated ex vivo gene transfer based on BMSCs can accelerate vascularization and bone regeneration on these composite scaffolds. The n‐HA/PA66 scaffold combined with the bFGF‐BMSCs may mimic the natural process of osteogenesis during repair of defect by tissue engineered bone. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A:, 2011.</description><subject>Absorptiometry, Photon</subject><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>angiogenesis</subject><subject>Animals</subject><subject>Applied cell therapy and gene therapy</subject><subject>bFGF</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>BMSCs</subject><subject>Bone Density - drug effects</subject><subject>Bone Marrow Cells - cytology</subject><subject>Durapatite - pharmacology</subject><subject>Female</subject><subject>Fibroblast Growth Factor 2 - genetics</subject><subject>Fibroblast Growth Factor 2 - therapeutic use</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic Therapy</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Health. Pharmaceutical industry</subject><subject>Implants, Experimental</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Medical sciences</subject><subject>Miscellaneous</subject><subject>nano-hydroxyapatite/polyamide66 (n-HA/PA66)</subject><subject>Neovascularization, Physiologic - drug effects</subject><subject>osteogenesis</subject><subject>Osteogenesis - drug effects</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Skull - diagnostic imaging</subject><subject>Skull - drug effects</subject><subject>Skull - pathology</subject><subject>Stromal Cells - cytology</subject><subject>Stromal Cells - drug effects</subject><subject>Stromal Cells - metabolism</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><subject>Transduction, Genetic</subject><subject>Transfusions. Complications. Transfusion reactions. Cell and gene therapy</subject><issn>1549-3296</issn><issn>1552-4965</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkktvEzEUhUcIRB-wYo-8QSzQBI9fsZdtRVKqUliAys7yzFynLhM72DNp8wf43XiaNOzoytbVd86918dF8abCkwpj8vG2Xk7MhFKM1bPisOKclEwJ_ny8M1VSosRBcZTSbYYF5uRlcUAqwhmV4rD4c-IXLizAQ3IJGd-ikHrYF8DfGN9Ai-oNqmfzGYJ7tHbrgEYA9TcQzWqDbIioDmPBpTRAVi2cB4jOL5DzKEITfOrj0PQueBQsaky3NtGZDrVgoenTq-KFNV2C17vzuPgx-_T97Ly8_Dr_fHZyWTZMEFXaKXCFsbGE21YawWwFUhqlWlxj0jLGpABVK6ZqygUGlvfNcKWEAcOYpcfF-63vKobfA6ReL11qoOuMhzAkLSXFRDIhniaFGkcR_GmSCamm8sHzw5ZsYkgpgtWr6JYmbnSF9Zilzllqox-yzPTbne9QL6Hds4_hZeDdDjApv6iNOSqX_nFUVeMumau23J3rYPO_nvri9Mtj83Krcfk73O81Jv7SYkqnXF9fzfWFmn27Ij-v9Tn9C8HgxxU</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Qu, Dan</creator><creator>Li, Jihua</creator><creator>Li, Yubao</creator><creator>Gao, Ying</creator><creator>Zuo, Yi</creator><creator>Hsu, Yuchun</creator><creator>Hu, Jing</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7QP</scope><scope>RC3</scope></search><sort><creationdate>20110301</creationdate><title>Angiogenesis and osteogenesis enhanced by bFGF ex vivo gene therapy for bone tissue engineering in reconstruction of calvarial defects</title><author>Qu, Dan ; Li, Jihua ; Li, Yubao ; Gao, Ying ; Zuo, Yi ; Hsu, Yuchun ; Hu, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4629-f7e5900af25fd8a64f1e88a99d0b02d44486e9b949b3560e4605af2196aea44f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Absorptiometry, Photon</topic><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>angiogenesis</topic><topic>Animals</topic><topic>Applied cell therapy and gene therapy</topic><topic>bFGF</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>BMSCs</topic><topic>Bone Density - drug effects</topic><topic>Bone Marrow Cells - cytology</topic><topic>Durapatite - pharmacology</topic><topic>Female</topic><topic>Fibroblast Growth Factor 2 - genetics</topic><topic>Fibroblast Growth Factor 2 - therapeutic use</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic Therapy</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Health. Pharmaceutical industry</topic><topic>Implants, Experimental</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Medical sciences</topic><topic>Miscellaneous</topic><topic>nano-hydroxyapatite/polyamide66 (n-HA/PA66)</topic><topic>Neovascularization, Physiologic - drug effects</topic><topic>osteogenesis</topic><topic>Osteogenesis - drug effects</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Skull - diagnostic imaging</topic><topic>Skull - drug effects</topic><topic>Skull - pathology</topic><topic>Stromal Cells - cytology</topic><topic>Stromal Cells - drug effects</topic><topic>Stromal Cells - metabolism</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><topic>Transduction, Genetic</topic><topic>Transfusions. Complications. Transfusion reactions. Cell and gene therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qu, Dan</creatorcontrib><creatorcontrib>Li, Jihua</creatorcontrib><creatorcontrib>Li, Yubao</creatorcontrib><creatorcontrib>Gao, Ying</creatorcontrib><creatorcontrib>Zuo, Yi</creatorcontrib><creatorcontrib>Hsu, Yuchun</creatorcontrib><creatorcontrib>Hu, Jing</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qu, Dan</au><au>Li, Jihua</au><au>Li, Yubao</au><au>Gao, Ying</au><au>Zuo, Yi</au><au>Hsu, Yuchun</au><au>Hu, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Angiogenesis and osteogenesis enhanced by bFGF ex vivo gene therapy for bone tissue engineering in reconstruction of calvarial defects</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>96A</volume><issue>3</issue><spage>543</spage><epage>551</epage><pages>543-551</pages><issn>1549-3296</issn><issn>1552-4965</issn><eissn>1552-4965</eissn><abstract>Reconstruction of bone defects by tissue engineered substitutes requires coordinated coupling between osteogenesis and angiogenesis. Basic fibroblast growth factor (bFGF or FGF‐2) is a protein which acts actively in osteogenesis and angiogenesis during skeletal healing and development. It is hypothesized that BMSCs transfected with bFGF can directly stimulate regeneration of vascular tissue, and subsequently enhance osseous formation and remodeling after implantation of the tissue engineered bone. This study was designed to examine the impact of bFGF‐BMSCs, seeded on nano‐hydroxyapatite/polyamide66 (n‐HA/PA66) composite scaffold, to enhance angiogenesis and osteogenesis in a calvarial critical‐sized defect model in rats. To investigate the vascularization and bone formation of tissue engineered bone, the substrate was removed and processed for immunohistochemical, scanning electron microscopic examinations (SEM), reverse transcriptase‐polymerase chain reaction (RT‐PCR), dual energy X‐ray absorptiometry (DEXA), microvessels counting, and new bone volume assay. The results demonstrate that bFGF mediated ex vivo gene transfer based on BMSCs can accelerate vascularization and bone regeneration on these composite scaffolds. The n‐HA/PA66 scaffold combined with the bFGF‐BMSCs may mimic the natural process of osteogenesis during repair of defect by tissue engineered bone. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A:, 2011.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21254386</pmid><doi>10.1002/jbm.a.33009</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of biomedical materials research. Part A, 2011-03, Vol.96A (3), p.543-551 |
issn | 1549-3296 1552-4965 1552-4965 |
language | eng |
recordid | cdi_proquest_miscellaneous_883028466 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Absorptiometry, Photon Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy angiogenesis Animals Applied cell therapy and gene therapy bFGF Biological and medical sciences Biotechnology BMSCs Bone Density - drug effects Bone Marrow Cells - cytology Durapatite - pharmacology Female Fibroblast Growth Factor 2 - genetics Fibroblast Growth Factor 2 - therapeutic use Fundamental and applied biological sciences. Psychology Genetic Therapy Green Fluorescent Proteins - metabolism Health. Pharmaceutical industry Implants, Experimental Industrial applications and implications. Economical aspects Medical sciences Miscellaneous nano-hydroxyapatite/polyamide66 (n-HA/PA66) Neovascularization, Physiologic - drug effects osteogenesis Osteogenesis - drug effects Rats Rats, Sprague-Dawley Skull - diagnostic imaging Skull - drug effects Skull - pathology Stromal Cells - cytology Stromal Cells - drug effects Stromal Cells - metabolism Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Technology. Biomaterials. Equipments Tissue Engineering - methods Tissue Scaffolds Transduction, Genetic Transfusions. Complications. Transfusion reactions. Cell and gene therapy |
title | Angiogenesis and osteogenesis enhanced by bFGF ex vivo gene therapy for bone tissue engineering in reconstruction of calvarial defects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A10%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Angiogenesis%20and%20osteogenesis%20enhanced%20by%20bFGF%20ex%20vivo%20gene%20therapy%20for%20bone%20tissue%20engineering%20in%20reconstruction%20of%20calvarial%20defects&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Qu,%20Dan&rft.date=2011-03-01&rft.volume=96A&rft.issue=3&rft.spage=543&rft.epage=551&rft.pages=543-551&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.33009&rft_dat=%3Cproquest_cross%3E883028466%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=846897866&rft_id=info:pmid/21254386&rfr_iscdi=true |