In Vitro characterization of low modulus linoleic acid coated strontium-substituted hydroxyapatite containing PMMA bone cement
Poly (methyl methacrylate) (PMMA) bone cement is widely used in vertebral body augmentation procedures such as vertebroplasty and balloon kyphoplasty. Filling high modulus PMMA increases the modulus of filled verterbra, increasing the risk of fracture in the adjacent vertebra. On the other hand, in...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2011-01, Vol.96B (1), p.76-83 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 83 |
---|---|
container_issue | 1 |
container_start_page | 76 |
container_title | Journal of biomedical materials research. Part B, Applied biomaterials |
container_volume | 96B |
creator | Lam, W. M. Pan, H. B. Fong, M.K. Cheung, W. S. Wong, K. L. Li, Z. Y. Luk, K. D. K. Chan, W. K. Wong, C. T. Yang, C. Lu, W. W. |
description | Poly (methyl methacrylate) (PMMA) bone cement is widely used in vertebral body augmentation procedures such as vertebroplasty and balloon kyphoplasty. Filling high modulus PMMA increases the modulus of filled verterbra, increasing the risk of fracture in the adjacent vertebra. On the other hand, in porous PMMA bone cements, wear particle generation and deterioration of mechanical performance are the major drawbacks. This study adopts a new approach by utilizing linoleic acid coated strontium substituted hydroxyapatite nanoparticle (Sr‐5 HA) and linoleic acid as plasticizer reducing bone cement's modulus with minimal impact on its strength. We determined the compressive strength (UCS) and modulus (Ec), hydrophobicity, injectability, in vitro bioactivity and biocompatibility of this bone cement at different filler and linoleic acid loading. At 20 wt % Sr5‐HA incorporation, UCS and Ec were reduced from 63 ± 2 MPa, 2142 ± 129 MPa to 58 ± 2 MPa, 1785 ± 64 MPa, respectively. UCS and Ec were further reduced to 49 ± 2 MPa and 774 ± 70 MPa respectively when 15 v/v of linoleic acid was incorporated. After 7 days of incubation, pre‐osteoblast cells (MC3T3‐E1) attached on 20 wt % Sr5‐HA and 20 wt % Sr5‐HA with 15 v/v of linoleic acid group were higher (3.73 ± 0.01 × 104, 2.27 ± 0.02 × 104) than their PMMA counterpart (1.83 ± 0.04 × 104). Incorporation of Sr5‐HA with linoleic acid in monomer phase is more effective in reducing the bone cement's stiffness than Sr5‐HA alone. Combination of low stiffness and high mechanical strength gives the novel bone cement the potential for use in vertebroplasty cement applications. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2011. |
doi_str_mv | 10.1002/jbm.b.31741 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883028269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>883028269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5281-d194559931043c19a2df29f4bb3617ee445125f3486910173eac252d9e8434753</originalsourceid><addsrcrecordid>eNqNkb1vFDEQxS0EIiFQ0SM3iALt4c9duwwRCUE5oAihtLxeL3Hw2oftVXIU_O04ucvRAdWMRr_33kgPgOcYLTBC5M1VPy36BcUdww_APuacNEwK_HC3d3QPPMn5qsIt4vQx2CO4TtLSffDrNMALV1KE5lInbYpN7qcuLgYYR-jjNZziMPs5Q-9C9NYZqI0boIm62AHmqgzFzVOT5z4XV-bb6-V6SPFmrVfVqNjKhqJdcOEb_LxcHsI-hnq0kw3lKXg0ap_ts-08AF-O350fvW_OPp2cHh2eNYYTgZsBS8a5lBQjRg2WmgwjkSPre9rizlrGOCZ8pEy0EiPcUasN4WSQVjDKOk4PwKuN7yrFH7PNRU0uG-u9DjbOWQlBERGklf8mO8lEZf_DE7dUsJaISr7ekCbFnJMd1Sq5Sae1wkjddqhqh6pXdx1W-sXWd-4nO-zY-9Iq8HIL6Gy0H5MOxuU_HJUIybsH8Ya7dt6u_5apPrxd3oc3G43Lxd7sNDp9V21HO66-fjxRx_KcEXSBatRvCjbC-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>816384628</pqid></control><display><type>article</type><title>In Vitro characterization of low modulus linoleic acid coated strontium-substituted hydroxyapatite containing PMMA bone cement</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Lam, W. M. ; Pan, H. B. ; Fong, M.K. ; Cheung, W. S. ; Wong, K. L. ; Li, Z. Y. ; Luk, K. D. K. ; Chan, W. K. ; Wong, C. T. ; Yang, C. ; Lu, W. W.</creator><creatorcontrib>Lam, W. M. ; Pan, H. B. ; Fong, M.K. ; Cheung, W. S. ; Wong, K. L. ; Li, Z. Y. ; Luk, K. D. K. ; Chan, W. K. ; Wong, C. T. ; Yang, C. ; Lu, W. W.</creatorcontrib><description>Poly (methyl methacrylate) (PMMA) bone cement is widely used in vertebral body augmentation procedures such as vertebroplasty and balloon kyphoplasty. Filling high modulus PMMA increases the modulus of filled verterbra, increasing the risk of fracture in the adjacent vertebra. On the other hand, in porous PMMA bone cements, wear particle generation and deterioration of mechanical performance are the major drawbacks. This study adopts a new approach by utilizing linoleic acid coated strontium substituted hydroxyapatite nanoparticle (Sr‐5 HA) and linoleic acid as plasticizer reducing bone cement's modulus with minimal impact on its strength. We determined the compressive strength (UCS) and modulus (Ec), hydrophobicity, injectability, in vitro bioactivity and biocompatibility of this bone cement at different filler and linoleic acid loading. At 20 wt % Sr5‐HA incorporation, UCS and Ec were reduced from 63 ± 2 MPa, 2142 ± 129 MPa to 58 ± 2 MPa, 1785 ± 64 MPa, respectively. UCS and Ec were further reduced to 49 ± 2 MPa and 774 ± 70 MPa respectively when 15 v/v of linoleic acid was incorporated. After 7 days of incubation, pre‐osteoblast cells (MC3T3‐E1) attached on 20 wt % Sr5‐HA and 20 wt % Sr5‐HA with 15 v/v of linoleic acid group were higher (3.73 ± 0.01 × 104, 2.27 ± 0.02 × 104) than their PMMA counterpart (1.83 ± 0.04 × 104). Incorporation of Sr5‐HA with linoleic acid in monomer phase is more effective in reducing the bone cement's stiffness than Sr5‐HA alone. Combination of low stiffness and high mechanical strength gives the novel bone cement the potential for use in vertebroplasty cement applications. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2011.</description><identifier>ISSN: 1552-4973</identifier><identifier>ISSN: 1552-4981</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.31741</identifier><identifier>PMID: 21053263</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Biological and medical sciences ; Bone Cements - chemistry ; Bone Substitutes - chemistry ; Cell Line ; Coated Materials, Biocompatible - chemistry ; Durapatite - chemistry ; Humans ; linoleic acid ; Linoleic Acid - chemistry ; Materials Testing - methods ; Medical sciences ; Mice ; Nanoparticles - chemistry ; Orthopedic surgery ; Polymethyl Methacrylate - chemistry ; polymethylmethacrylate ; Strontium - chemistry ; strontium-substituted hydroxyapatite (Sr-HA) ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology. Biomaterials. Equipments ; vertebroplasty</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2011-01, Vol.96B (1), p.76-83</ispartof><rights>Copyright © 2010 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><rights>2010 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5281-d194559931043c19a2df29f4bb3617ee445125f3486910173eac252d9e8434753</citedby><cites>FETCH-LOGICAL-c5281-d194559931043c19a2df29f4bb3617ee445125f3486910173eac252d9e8434753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.b.31741$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.b.31741$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23900985$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21053263$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lam, W. M.</creatorcontrib><creatorcontrib>Pan, H. B.</creatorcontrib><creatorcontrib>Fong, M.K.</creatorcontrib><creatorcontrib>Cheung, W. S.</creatorcontrib><creatorcontrib>Wong, K. L.</creatorcontrib><creatorcontrib>Li, Z. Y.</creatorcontrib><creatorcontrib>Luk, K. D. K.</creatorcontrib><creatorcontrib>Chan, W. K.</creatorcontrib><creatorcontrib>Wong, C. T.</creatorcontrib><creatorcontrib>Yang, C.</creatorcontrib><creatorcontrib>Lu, W. W.</creatorcontrib><title>In Vitro characterization of low modulus linoleic acid coated strontium-substituted hydroxyapatite containing PMMA bone cement</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J. Biomed. Mater. Res</addtitle><description>Poly (methyl methacrylate) (PMMA) bone cement is widely used in vertebral body augmentation procedures such as vertebroplasty and balloon kyphoplasty. Filling high modulus PMMA increases the modulus of filled verterbra, increasing the risk of fracture in the adjacent vertebra. On the other hand, in porous PMMA bone cements, wear particle generation and deterioration of mechanical performance are the major drawbacks. This study adopts a new approach by utilizing linoleic acid coated strontium substituted hydroxyapatite nanoparticle (Sr‐5 HA) and linoleic acid as plasticizer reducing bone cement's modulus with minimal impact on its strength. We determined the compressive strength (UCS) and modulus (Ec), hydrophobicity, injectability, in vitro bioactivity and biocompatibility of this bone cement at different filler and linoleic acid loading. At 20 wt % Sr5‐HA incorporation, UCS and Ec were reduced from 63 ± 2 MPa, 2142 ± 129 MPa to 58 ± 2 MPa, 1785 ± 64 MPa, respectively. UCS and Ec were further reduced to 49 ± 2 MPa and 774 ± 70 MPa respectively when 15 v/v of linoleic acid was incorporated. After 7 days of incubation, pre‐osteoblast cells (MC3T3‐E1) attached on 20 wt % Sr5‐HA and 20 wt % Sr5‐HA with 15 v/v of linoleic acid group were higher (3.73 ± 0.01 × 104, 2.27 ± 0.02 × 104) than their PMMA counterpart (1.83 ± 0.04 × 104). Incorporation of Sr5‐HA with linoleic acid in monomer phase is more effective in reducing the bone cement's stiffness than Sr5‐HA alone. Combination of low stiffness and high mechanical strength gives the novel bone cement the potential for use in vertebroplasty cement applications. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2011.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Bone Cements - chemistry</subject><subject>Bone Substitutes - chemistry</subject><subject>Cell Line</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Durapatite - chemistry</subject><subject>Humans</subject><subject>linoleic acid</subject><subject>Linoleic Acid - chemistry</subject><subject>Materials Testing - methods</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Nanoparticles - chemistry</subject><subject>Orthopedic surgery</subject><subject>Polymethyl Methacrylate - chemistry</subject><subject>polymethylmethacrylate</subject><subject>Strontium - chemistry</subject><subject>strontium-substituted hydroxyapatite (Sr-HA)</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology. Biomaterials. Equipments</subject><subject>vertebroplasty</subject><issn>1552-4973</issn><issn>1552-4981</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkb1vFDEQxS0EIiFQ0SM3iALt4c9duwwRCUE5oAihtLxeL3Hw2oftVXIU_O04ucvRAdWMRr_33kgPgOcYLTBC5M1VPy36BcUdww_APuacNEwK_HC3d3QPPMn5qsIt4vQx2CO4TtLSffDrNMALV1KE5lInbYpN7qcuLgYYR-jjNZziMPs5Q-9C9NYZqI0boIm62AHmqgzFzVOT5z4XV-bb6-V6SPFmrVfVqNjKhqJdcOEb_LxcHsI-hnq0kw3lKXg0ap_ts-08AF-O350fvW_OPp2cHh2eNYYTgZsBS8a5lBQjRg2WmgwjkSPre9rizlrGOCZ8pEy0EiPcUasN4WSQVjDKOk4PwKuN7yrFH7PNRU0uG-u9DjbOWQlBERGklf8mO8lEZf_DE7dUsJaISr7ekCbFnJMd1Sq5Sae1wkjddqhqh6pXdx1W-sXWd-4nO-zY-9Iq8HIL6Gy0H5MOxuU_HJUIybsH8Ya7dt6u_5apPrxd3oc3G43Lxd7sNDp9V21HO66-fjxRx_KcEXSBatRvCjbC-g</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Lam, W. M.</creator><creator>Pan, H. B.</creator><creator>Fong, M.K.</creator><creator>Cheung, W. S.</creator><creator>Wong, K. L.</creator><creator>Li, Z. Y.</creator><creator>Luk, K. D. K.</creator><creator>Chan, W. K.</creator><creator>Wong, C. T.</creator><creator>Yang, C.</creator><creator>Lu, W. W.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7QP</scope></search><sort><creationdate>201101</creationdate><title>In Vitro characterization of low modulus linoleic acid coated strontium-substituted hydroxyapatite containing PMMA bone cement</title><author>Lam, W. M. ; Pan, H. B. ; Fong, M.K. ; Cheung, W. S. ; Wong, K. L. ; Li, Z. Y. ; Luk, K. D. K. ; Chan, W. K. ; Wong, C. T. ; Yang, C. ; Lu, W. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5281-d194559931043c19a2df29f4bb3617ee445125f3486910173eac252d9e8434753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Bone Cements - chemistry</topic><topic>Bone Substitutes - chemistry</topic><topic>Cell Line</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Durapatite - chemistry</topic><topic>Humans</topic><topic>linoleic acid</topic><topic>Linoleic Acid - chemistry</topic><topic>Materials Testing - methods</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Nanoparticles - chemistry</topic><topic>Orthopedic surgery</topic><topic>Polymethyl Methacrylate - chemistry</topic><topic>polymethylmethacrylate</topic><topic>Strontium - chemistry</topic><topic>strontium-substituted hydroxyapatite (Sr-HA)</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology. Biomaterials. Equipments</topic><topic>vertebroplasty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lam, W. M.</creatorcontrib><creatorcontrib>Pan, H. B.</creatorcontrib><creatorcontrib>Fong, M.K.</creatorcontrib><creatorcontrib>Cheung, W. S.</creatorcontrib><creatorcontrib>Wong, K. L.</creatorcontrib><creatorcontrib>Li, Z. Y.</creatorcontrib><creatorcontrib>Luk, K. D. K.</creatorcontrib><creatorcontrib>Chan, W. K.</creatorcontrib><creatorcontrib>Wong, C. T.</creatorcontrib><creatorcontrib>Yang, C.</creatorcontrib><creatorcontrib>Lu, W. W.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lam, W. M.</au><au>Pan, H. B.</au><au>Fong, M.K.</au><au>Cheung, W. S.</au><au>Wong, K. L.</au><au>Li, Z. Y.</au><au>Luk, K. D. K.</au><au>Chan, W. K.</au><au>Wong, C. T.</au><au>Yang, C.</au><au>Lu, W. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Vitro characterization of low modulus linoleic acid coated strontium-substituted hydroxyapatite containing PMMA bone cement</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2011-01</date><risdate>2011</risdate><volume>96B</volume><issue>1</issue><spage>76</spage><epage>83</epage><pages>76-83</pages><issn>1552-4973</issn><issn>1552-4981</issn><eissn>1552-4981</eissn><abstract>Poly (methyl methacrylate) (PMMA) bone cement is widely used in vertebral body augmentation procedures such as vertebroplasty and balloon kyphoplasty. Filling high modulus PMMA increases the modulus of filled verterbra, increasing the risk of fracture in the adjacent vertebra. On the other hand, in porous PMMA bone cements, wear particle generation and deterioration of mechanical performance are the major drawbacks. This study adopts a new approach by utilizing linoleic acid coated strontium substituted hydroxyapatite nanoparticle (Sr‐5 HA) and linoleic acid as plasticizer reducing bone cement's modulus with minimal impact on its strength. We determined the compressive strength (UCS) and modulus (Ec), hydrophobicity, injectability, in vitro bioactivity and biocompatibility of this bone cement at different filler and linoleic acid loading. At 20 wt % Sr5‐HA incorporation, UCS and Ec were reduced from 63 ± 2 MPa, 2142 ± 129 MPa to 58 ± 2 MPa, 1785 ± 64 MPa, respectively. UCS and Ec were further reduced to 49 ± 2 MPa and 774 ± 70 MPa respectively when 15 v/v of linoleic acid was incorporated. After 7 days of incubation, pre‐osteoblast cells (MC3T3‐E1) attached on 20 wt % Sr5‐HA and 20 wt % Sr5‐HA with 15 v/v of linoleic acid group were higher (3.73 ± 0.01 × 104, 2.27 ± 0.02 × 104) than their PMMA counterpart (1.83 ± 0.04 × 104). Incorporation of Sr5‐HA with linoleic acid in monomer phase is more effective in reducing the bone cement's stiffness than Sr5‐HA alone. Combination of low stiffness and high mechanical strength gives the novel bone cement the potential for use in vertebroplasty cement applications. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2011.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21053263</pmid><doi>10.1002/jbm.b.31741</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4973 |
ispartof | Journal of biomedical materials research. Part B, Applied biomaterials, 2011-01, Vol.96B (1), p.76-83 |
issn | 1552-4973 1552-4981 1552-4981 |
language | eng |
recordid | cdi_proquest_miscellaneous_883028269 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Animals Biological and medical sciences Bone Cements - chemistry Bone Substitutes - chemistry Cell Line Coated Materials, Biocompatible - chemistry Durapatite - chemistry Humans linoleic acid Linoleic Acid - chemistry Materials Testing - methods Medical sciences Mice Nanoparticles - chemistry Orthopedic surgery Polymethyl Methacrylate - chemistry polymethylmethacrylate Strontium - chemistry strontium-substituted hydroxyapatite (Sr-HA) Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Technology. Biomaterials. Equipments vertebroplasty |
title | In Vitro characterization of low modulus linoleic acid coated strontium-substituted hydroxyapatite containing PMMA bone cement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T21%3A32%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Vitro%20characterization%20of%20low%20modulus%20linoleic%20acid%20coated%20strontium-substituted%20hydroxyapatite%20containing%20PMMA%20bone%20cement&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Lam,%20W.%20M.&rft.date=2011-01&rft.volume=96B&rft.issue=1&rft.spage=76&rft.epage=83&rft.pages=76-83&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.31741&rft_dat=%3Cproquest_cross%3E883028269%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=816384628&rft_id=info:pmid/21053263&rfr_iscdi=true |