In Vitro characterization of low modulus linoleic acid coated strontium-substituted hydroxyapatite containing PMMA bone cement

Poly (methyl methacrylate) (PMMA) bone cement is widely used in vertebral body augmentation procedures such as vertebroplasty and balloon kyphoplasty. Filling high modulus PMMA increases the modulus of filled verterbra, increasing the risk of fracture in the adjacent vertebra. On the other hand, in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2011-01, Vol.96B (1), p.76-83
Hauptverfasser: Lam, W. M., Pan, H. B., Fong, M.K., Cheung, W. S., Wong, K. L., Li, Z. Y., Luk, K. D. K., Chan, W. K., Wong, C. T., Yang, C., Lu, W. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 83
container_issue 1
container_start_page 76
container_title Journal of biomedical materials research. Part B, Applied biomaterials
container_volume 96B
creator Lam, W. M.
Pan, H. B.
Fong, M.K.
Cheung, W. S.
Wong, K. L.
Li, Z. Y.
Luk, K. D. K.
Chan, W. K.
Wong, C. T.
Yang, C.
Lu, W. W.
description Poly (methyl methacrylate) (PMMA) bone cement is widely used in vertebral body augmentation procedures such as vertebroplasty and balloon kyphoplasty. Filling high modulus PMMA increases the modulus of filled verterbra, increasing the risk of fracture in the adjacent vertebra. On the other hand, in porous PMMA bone cements, wear particle generation and deterioration of mechanical performance are the major drawbacks. This study adopts a new approach by utilizing linoleic acid coated strontium substituted hydroxyapatite nanoparticle (Sr‐5 HA) and linoleic acid as plasticizer reducing bone cement's modulus with minimal impact on its strength. We determined the compressive strength (UCS) and modulus (Ec), hydrophobicity, injectability, in vitro bioactivity and biocompatibility of this bone cement at different filler and linoleic acid loading. At 20 wt % Sr5‐HA incorporation, UCS and Ec were reduced from 63 ± 2 MPa, 2142 ± 129 MPa to 58 ± 2 MPa, 1785 ± 64 MPa, respectively. UCS and Ec were further reduced to 49 ± 2 MPa and 774 ± 70 MPa respectively when 15 v/v of linoleic acid was incorporated. After 7 days of incubation, pre‐osteoblast cells (MC3T3‐E1) attached on 20 wt % Sr5‐HA and 20 wt % Sr5‐HA with 15 v/v of linoleic acid group were higher (3.73 ± 0.01 × 104, 2.27 ± 0.02 × 104) than their PMMA counterpart (1.83 ± 0.04 × 104). Incorporation of Sr5‐HA with linoleic acid in monomer phase is more effective in reducing the bone cement's stiffness than Sr5‐HA alone. Combination of low stiffness and high mechanical strength gives the novel bone cement the potential for use in vertebroplasty cement applications. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2011.
doi_str_mv 10.1002/jbm.b.31741
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883028269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>883028269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5281-d194559931043c19a2df29f4bb3617ee445125f3486910173eac252d9e8434753</originalsourceid><addsrcrecordid>eNqNkb1vFDEQxS0EIiFQ0SM3iALt4c9duwwRCUE5oAihtLxeL3Hw2oftVXIU_O04ucvRAdWMRr_33kgPgOcYLTBC5M1VPy36BcUdww_APuacNEwK_HC3d3QPPMn5qsIt4vQx2CO4TtLSffDrNMALV1KE5lInbYpN7qcuLgYYR-jjNZziMPs5Q-9C9NYZqI0boIm62AHmqgzFzVOT5z4XV-bb6-V6SPFmrVfVqNjKhqJdcOEb_LxcHsI-hnq0kw3lKXg0ap_ts-08AF-O350fvW_OPp2cHh2eNYYTgZsBS8a5lBQjRg2WmgwjkSPre9rizlrGOCZ8pEy0EiPcUasN4WSQVjDKOk4PwKuN7yrFH7PNRU0uG-u9DjbOWQlBERGklf8mO8lEZf_DE7dUsJaISr7ekCbFnJMd1Sq5Sae1wkjddqhqh6pXdx1W-sXWd-4nO-zY-9Iq8HIL6Gy0H5MOxuU_HJUIybsH8Ya7dt6u_5apPrxd3oc3G43Lxd7sNDp9V21HO66-fjxRx_KcEXSBatRvCjbC-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>816384628</pqid></control><display><type>article</type><title>In Vitro characterization of low modulus linoleic acid coated strontium-substituted hydroxyapatite containing PMMA bone cement</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Lam, W. M. ; Pan, H. B. ; Fong, M.K. ; Cheung, W. S. ; Wong, K. L. ; Li, Z. Y. ; Luk, K. D. K. ; Chan, W. K. ; Wong, C. T. ; Yang, C. ; Lu, W. W.</creator><creatorcontrib>Lam, W. M. ; Pan, H. B. ; Fong, M.K. ; Cheung, W. S. ; Wong, K. L. ; Li, Z. Y. ; Luk, K. D. K. ; Chan, W. K. ; Wong, C. T. ; Yang, C. ; Lu, W. W.</creatorcontrib><description>Poly (methyl methacrylate) (PMMA) bone cement is widely used in vertebral body augmentation procedures such as vertebroplasty and balloon kyphoplasty. Filling high modulus PMMA increases the modulus of filled verterbra, increasing the risk of fracture in the adjacent vertebra. On the other hand, in porous PMMA bone cements, wear particle generation and deterioration of mechanical performance are the major drawbacks. This study adopts a new approach by utilizing linoleic acid coated strontium substituted hydroxyapatite nanoparticle (Sr‐5 HA) and linoleic acid as plasticizer reducing bone cement's modulus with minimal impact on its strength. We determined the compressive strength (UCS) and modulus (Ec), hydrophobicity, injectability, in vitro bioactivity and biocompatibility of this bone cement at different filler and linoleic acid loading. At 20 wt % Sr5‐HA incorporation, UCS and Ec were reduced from 63 ± 2 MPa, 2142 ± 129 MPa to 58 ± 2 MPa, 1785 ± 64 MPa, respectively. UCS and Ec were further reduced to 49 ± 2 MPa and 774 ± 70 MPa respectively when 15 v/v of linoleic acid was incorporated. After 7 days of incubation, pre‐osteoblast cells (MC3T3‐E1) attached on 20 wt % Sr5‐HA and 20 wt % Sr5‐HA with 15 v/v of linoleic acid group were higher (3.73 ± 0.01 × 104, 2.27 ± 0.02 × 104) than their PMMA counterpart (1.83 ± 0.04 × 104). Incorporation of Sr5‐HA with linoleic acid in monomer phase is more effective in reducing the bone cement's stiffness than Sr5‐HA alone. Combination of low stiffness and high mechanical strength gives the novel bone cement the potential for use in vertebroplasty cement applications. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2011.</description><identifier>ISSN: 1552-4973</identifier><identifier>ISSN: 1552-4981</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.31741</identifier><identifier>PMID: 21053263</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Biological and medical sciences ; Bone Cements - chemistry ; Bone Substitutes - chemistry ; Cell Line ; Coated Materials, Biocompatible - chemistry ; Durapatite - chemistry ; Humans ; linoleic acid ; Linoleic Acid - chemistry ; Materials Testing - methods ; Medical sciences ; Mice ; Nanoparticles - chemistry ; Orthopedic surgery ; Polymethyl Methacrylate - chemistry ; polymethylmethacrylate ; Strontium - chemistry ; strontium-substituted hydroxyapatite (Sr-HA) ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology. Biomaterials. Equipments ; vertebroplasty</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2011-01, Vol.96B (1), p.76-83</ispartof><rights>Copyright © 2010 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><rights>2010 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5281-d194559931043c19a2df29f4bb3617ee445125f3486910173eac252d9e8434753</citedby><cites>FETCH-LOGICAL-c5281-d194559931043c19a2df29f4bb3617ee445125f3486910173eac252d9e8434753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.b.31741$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.b.31741$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23900985$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21053263$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lam, W. M.</creatorcontrib><creatorcontrib>Pan, H. B.</creatorcontrib><creatorcontrib>Fong, M.K.</creatorcontrib><creatorcontrib>Cheung, W. S.</creatorcontrib><creatorcontrib>Wong, K. L.</creatorcontrib><creatorcontrib>Li, Z. Y.</creatorcontrib><creatorcontrib>Luk, K. D. K.</creatorcontrib><creatorcontrib>Chan, W. K.</creatorcontrib><creatorcontrib>Wong, C. T.</creatorcontrib><creatorcontrib>Yang, C.</creatorcontrib><creatorcontrib>Lu, W. W.</creatorcontrib><title>In Vitro characterization of low modulus linoleic acid coated strontium-substituted hydroxyapatite containing PMMA bone cement</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J. Biomed. Mater. Res</addtitle><description>Poly (methyl methacrylate) (PMMA) bone cement is widely used in vertebral body augmentation procedures such as vertebroplasty and balloon kyphoplasty. Filling high modulus PMMA increases the modulus of filled verterbra, increasing the risk of fracture in the adjacent vertebra. On the other hand, in porous PMMA bone cements, wear particle generation and deterioration of mechanical performance are the major drawbacks. This study adopts a new approach by utilizing linoleic acid coated strontium substituted hydroxyapatite nanoparticle (Sr‐5 HA) and linoleic acid as plasticizer reducing bone cement's modulus with minimal impact on its strength. We determined the compressive strength (UCS) and modulus (Ec), hydrophobicity, injectability, in vitro bioactivity and biocompatibility of this bone cement at different filler and linoleic acid loading. At 20 wt % Sr5‐HA incorporation, UCS and Ec were reduced from 63 ± 2 MPa, 2142 ± 129 MPa to 58 ± 2 MPa, 1785 ± 64 MPa, respectively. UCS and Ec were further reduced to 49 ± 2 MPa and 774 ± 70 MPa respectively when 15 v/v of linoleic acid was incorporated. After 7 days of incubation, pre‐osteoblast cells (MC3T3‐E1) attached on 20 wt % Sr5‐HA and 20 wt % Sr5‐HA with 15 v/v of linoleic acid group were higher (3.73 ± 0.01 × 104, 2.27 ± 0.02 × 104) than their PMMA counterpart (1.83 ± 0.04 × 104). Incorporation of Sr5‐HA with linoleic acid in monomer phase is more effective in reducing the bone cement's stiffness than Sr5‐HA alone. Combination of low stiffness and high mechanical strength gives the novel bone cement the potential for use in vertebroplasty cement applications. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2011.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Bone Cements - chemistry</subject><subject>Bone Substitutes - chemistry</subject><subject>Cell Line</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Durapatite - chemistry</subject><subject>Humans</subject><subject>linoleic acid</subject><subject>Linoleic Acid - chemistry</subject><subject>Materials Testing - methods</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Nanoparticles - chemistry</subject><subject>Orthopedic surgery</subject><subject>Polymethyl Methacrylate - chemistry</subject><subject>polymethylmethacrylate</subject><subject>Strontium - chemistry</subject><subject>strontium-substituted hydroxyapatite (Sr-HA)</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology. Biomaterials. Equipments</subject><subject>vertebroplasty</subject><issn>1552-4973</issn><issn>1552-4981</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkb1vFDEQxS0EIiFQ0SM3iALt4c9duwwRCUE5oAihtLxeL3Hw2oftVXIU_O04ucvRAdWMRr_33kgPgOcYLTBC5M1VPy36BcUdww_APuacNEwK_HC3d3QPPMn5qsIt4vQx2CO4TtLSffDrNMALV1KE5lInbYpN7qcuLgYYR-jjNZziMPs5Q-9C9NYZqI0boIm62AHmqgzFzVOT5z4XV-bb6-V6SPFmrVfVqNjKhqJdcOEb_LxcHsI-hnq0kw3lKXg0ap_ts-08AF-O350fvW_OPp2cHh2eNYYTgZsBS8a5lBQjRg2WmgwjkSPre9rizlrGOCZ8pEy0EiPcUasN4WSQVjDKOk4PwKuN7yrFH7PNRU0uG-u9DjbOWQlBERGklf8mO8lEZf_DE7dUsJaISr7ekCbFnJMd1Sq5Sae1wkjddqhqh6pXdx1W-sXWd-4nO-zY-9Iq8HIL6Gy0H5MOxuU_HJUIybsH8Ya7dt6u_5apPrxd3oc3G43Lxd7sNDp9V21HO66-fjxRx_KcEXSBatRvCjbC-g</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Lam, W. M.</creator><creator>Pan, H. B.</creator><creator>Fong, M.K.</creator><creator>Cheung, W. S.</creator><creator>Wong, K. L.</creator><creator>Li, Z. Y.</creator><creator>Luk, K. D. K.</creator><creator>Chan, W. K.</creator><creator>Wong, C. T.</creator><creator>Yang, C.</creator><creator>Lu, W. W.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7QP</scope></search><sort><creationdate>201101</creationdate><title>In Vitro characterization of low modulus linoleic acid coated strontium-substituted hydroxyapatite containing PMMA bone cement</title><author>Lam, W. M. ; Pan, H. B. ; Fong, M.K. ; Cheung, W. S. ; Wong, K. L. ; Li, Z. Y. ; Luk, K. D. K. ; Chan, W. K. ; Wong, C. T. ; Yang, C. ; Lu, W. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5281-d194559931043c19a2df29f4bb3617ee445125f3486910173eac252d9e8434753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Bone Cements - chemistry</topic><topic>Bone Substitutes - chemistry</topic><topic>Cell Line</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Durapatite - chemistry</topic><topic>Humans</topic><topic>linoleic acid</topic><topic>Linoleic Acid - chemistry</topic><topic>Materials Testing - methods</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Nanoparticles - chemistry</topic><topic>Orthopedic surgery</topic><topic>Polymethyl Methacrylate - chemistry</topic><topic>polymethylmethacrylate</topic><topic>Strontium - chemistry</topic><topic>strontium-substituted hydroxyapatite (Sr-HA)</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology. Biomaterials. Equipments</topic><topic>vertebroplasty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lam, W. M.</creatorcontrib><creatorcontrib>Pan, H. B.</creatorcontrib><creatorcontrib>Fong, M.K.</creatorcontrib><creatorcontrib>Cheung, W. S.</creatorcontrib><creatorcontrib>Wong, K. L.</creatorcontrib><creatorcontrib>Li, Z. Y.</creatorcontrib><creatorcontrib>Luk, K. D. K.</creatorcontrib><creatorcontrib>Chan, W. K.</creatorcontrib><creatorcontrib>Wong, C. T.</creatorcontrib><creatorcontrib>Yang, C.</creatorcontrib><creatorcontrib>Lu, W. W.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lam, W. M.</au><au>Pan, H. B.</au><au>Fong, M.K.</au><au>Cheung, W. S.</au><au>Wong, K. L.</au><au>Li, Z. Y.</au><au>Luk, K. D. K.</au><au>Chan, W. K.</au><au>Wong, C. T.</au><au>Yang, C.</au><au>Lu, W. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Vitro characterization of low modulus linoleic acid coated strontium-substituted hydroxyapatite containing PMMA bone cement</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2011-01</date><risdate>2011</risdate><volume>96B</volume><issue>1</issue><spage>76</spage><epage>83</epage><pages>76-83</pages><issn>1552-4973</issn><issn>1552-4981</issn><eissn>1552-4981</eissn><abstract>Poly (methyl methacrylate) (PMMA) bone cement is widely used in vertebral body augmentation procedures such as vertebroplasty and balloon kyphoplasty. Filling high modulus PMMA increases the modulus of filled verterbra, increasing the risk of fracture in the adjacent vertebra. On the other hand, in porous PMMA bone cements, wear particle generation and deterioration of mechanical performance are the major drawbacks. This study adopts a new approach by utilizing linoleic acid coated strontium substituted hydroxyapatite nanoparticle (Sr‐5 HA) and linoleic acid as plasticizer reducing bone cement's modulus with minimal impact on its strength. We determined the compressive strength (UCS) and modulus (Ec), hydrophobicity, injectability, in vitro bioactivity and biocompatibility of this bone cement at different filler and linoleic acid loading. At 20 wt % Sr5‐HA incorporation, UCS and Ec were reduced from 63 ± 2 MPa, 2142 ± 129 MPa to 58 ± 2 MPa, 1785 ± 64 MPa, respectively. UCS and Ec were further reduced to 49 ± 2 MPa and 774 ± 70 MPa respectively when 15 v/v of linoleic acid was incorporated. After 7 days of incubation, pre‐osteoblast cells (MC3T3‐E1) attached on 20 wt % Sr5‐HA and 20 wt % Sr5‐HA with 15 v/v of linoleic acid group were higher (3.73 ± 0.01 × 104, 2.27 ± 0.02 × 104) than their PMMA counterpart (1.83 ± 0.04 × 104). Incorporation of Sr5‐HA with linoleic acid in monomer phase is more effective in reducing the bone cement's stiffness than Sr5‐HA alone. Combination of low stiffness and high mechanical strength gives the novel bone cement the potential for use in vertebroplasty cement applications. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2011.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21053263</pmid><doi>10.1002/jbm.b.31741</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1552-4973
ispartof Journal of biomedical materials research. Part B, Applied biomaterials, 2011-01, Vol.96B (1), p.76-83
issn 1552-4973
1552-4981
1552-4981
language eng
recordid cdi_proquest_miscellaneous_883028269
source MEDLINE; Access via Wiley Online Library
subjects Animals
Biological and medical sciences
Bone Cements - chemistry
Bone Substitutes - chemistry
Cell Line
Coated Materials, Biocompatible - chemistry
Durapatite - chemistry
Humans
linoleic acid
Linoleic Acid - chemistry
Materials Testing - methods
Medical sciences
Mice
Nanoparticles - chemistry
Orthopedic surgery
Polymethyl Methacrylate - chemistry
polymethylmethacrylate
Strontium - chemistry
strontium-substituted hydroxyapatite (Sr-HA)
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Technology. Biomaterials. Equipments
vertebroplasty
title In Vitro characterization of low modulus linoleic acid coated strontium-substituted hydroxyapatite containing PMMA bone cement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T21%3A32%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Vitro%20characterization%20of%20low%20modulus%20linoleic%20acid%20coated%20strontium-substituted%20hydroxyapatite%20containing%20PMMA%20bone%20cement&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Lam,%20W.%20M.&rft.date=2011-01&rft.volume=96B&rft.issue=1&rft.spage=76&rft.epage=83&rft.pages=76-83&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.31741&rft_dat=%3Cproquest_cross%3E883028269%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=816384628&rft_id=info:pmid/21053263&rfr_iscdi=true