High-performance computing MRI simulations
A new open‐source software project is presented, JEMRIS, the Jülich Extensible MRI Simulator, which provides an MRI sequence development and simulation environment for the MRI community. The development was driven by the desire to achieve generality of simulated three‐dimensional MRI experiments ref...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2010-07, Vol.64 (1), p.186-193 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 193 |
---|---|
container_issue | 1 |
container_start_page | 186 |
container_title | Magnetic resonance in medicine |
container_volume | 64 |
creator | Stöcker, Tony Vahedipour, Kaveh Pflugfelder, Daniel Shah, N. Jon |
description | A new open‐source software project is presented, JEMRIS, the Jülich Extensible MRI Simulator, which provides an MRI sequence development and simulation environment for the MRI community. The development was driven by the desire to achieve generality of simulated three‐dimensional MRI experiments reflecting modern MRI systems hardware. The accompanying computational burden is overcome by means of parallel computing. Many aspects are covered that have not hitherto been simultaneously investigated in general MRI simulations such as parallel transmit and receive, important off‐resonance effects, nonlinear gradients, and arbitrary spatiotemporal parameter variations at different levels. The latter can be used to simulate various types of motion, for instance. The JEMRIS user interface is very simple to use, but nevertheless it presents few limitations. MRI sequences with arbitrary waveforms and complex interdependent modules are modeled in a graphical user interface–based environment requiring no further programming. This manuscript describes the concepts, methods, and performance of the software. Examples of novel simulation results in active fields of MRI research are given. Magn Reson Med 64:186–193, 2010. © 2010 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/mrm.22406 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883028189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733478136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4606-871e0d48346c9013dc939eab394c80023b1d47ee82f151b2bbc3a7030d0f07783</originalsourceid><addsrcrecordid>eNqFkEtLw0AURgdRbK0u_APSnSikvfNIZmapRdtCo1AVwc2QTCY1mjRxJkH77432sRNXd3O-w-UgdIphgAHIsLDFgBAGwR7qYp8Qj_iS7aMucAYexZJ10JFzbwAgJWeHqEPA51wK3kWXk2zx6lXGpqUtoqU2fV0WVVNny0U_nE_7LiuaPKqzcumO0UEa5c6cbG4PPd3ePI4m3ux-PB1dzTzNAgg8wbGBhAnKAi0B00RLKk0UU8m0aL-lMU4YN0aQFPs4JnGsacSBQgIpcC5oD52vvZUtPxrjalVkTps8j5ambJwSggIRWMh_SU4p4wLToCUv1qS2pXPWpKqyWRHZlcKgfhqqtqH6bdiyZxtrExcm2ZHbaC0wXAOfWW5Wf5tUOA-3Sm-9yFxtvnaLyL6rgFPuq-e7sbpm4QsOyIMa02-R1oe6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733478136</pqid></control><display><type>article</type><title>High-performance computing MRI simulations</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Stöcker, Tony ; Vahedipour, Kaveh ; Pflugfelder, Daniel ; Shah, N. Jon</creator><creatorcontrib>Stöcker, Tony ; Vahedipour, Kaveh ; Pflugfelder, Daniel ; Shah, N. Jon</creatorcontrib><description>A new open‐source software project is presented, JEMRIS, the Jülich Extensible MRI Simulator, which provides an MRI sequence development and simulation environment for the MRI community. The development was driven by the desire to achieve generality of simulated three‐dimensional MRI experiments reflecting modern MRI systems hardware. The accompanying computational burden is overcome by means of parallel computing. Many aspects are covered that have not hitherto been simultaneously investigated in general MRI simulations such as parallel transmit and receive, important off‐resonance effects, nonlinear gradients, and arbitrary spatiotemporal parameter variations at different levels. The latter can be used to simulate various types of motion, for instance. The JEMRIS user interface is very simple to use, but nevertheless it presents few limitations. MRI sequences with arbitrary waveforms and complex interdependent modules are modeled in a graphical user interface–based environment requiring no further programming. This manuscript describes the concepts, methods, and performance of the software. Examples of novel simulation results in active fields of MRI research are given. Magn Reson Med 64:186–193, 2010. © 2010 Wiley‐Liss, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>ISSN: 1522-2594</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.22406</identifier><identifier>PMID: 20577987</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Bloch equations ; Computer Simulation ; Computing Methodologies ; high performance computing ; Humans ; Magnetic Resonance Imaging - methods ; Models, Biological ; MRI simulation ; object-oriented design patterns ; sequence development ; Software ; User-Computer Interface</subject><ispartof>Magnetic resonance in medicine, 2010-07, Vol.64 (1), p.186-193</ispartof><rights>Copyright © 2010 Wiley‐Liss, Inc.</rights><rights>(c) 2010 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4606-871e0d48346c9013dc939eab394c80023b1d47ee82f151b2bbc3a7030d0f07783</citedby><cites>FETCH-LOGICAL-c4606-871e0d48346c9013dc939eab394c80023b1d47ee82f151b2bbc3a7030d0f07783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.22406$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.22406$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20577987$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stöcker, Tony</creatorcontrib><creatorcontrib>Vahedipour, Kaveh</creatorcontrib><creatorcontrib>Pflugfelder, Daniel</creatorcontrib><creatorcontrib>Shah, N. Jon</creatorcontrib><title>High-performance computing MRI simulations</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>A new open‐source software project is presented, JEMRIS, the Jülich Extensible MRI Simulator, which provides an MRI sequence development and simulation environment for the MRI community. The development was driven by the desire to achieve generality of simulated three‐dimensional MRI experiments reflecting modern MRI systems hardware. The accompanying computational burden is overcome by means of parallel computing. Many aspects are covered that have not hitherto been simultaneously investigated in general MRI simulations such as parallel transmit and receive, important off‐resonance effects, nonlinear gradients, and arbitrary spatiotemporal parameter variations at different levels. The latter can be used to simulate various types of motion, for instance. The JEMRIS user interface is very simple to use, but nevertheless it presents few limitations. MRI sequences with arbitrary waveforms and complex interdependent modules are modeled in a graphical user interface–based environment requiring no further programming. This manuscript describes the concepts, methods, and performance of the software. Examples of novel simulation results in active fields of MRI research are given. Magn Reson Med 64:186–193, 2010. © 2010 Wiley‐Liss, Inc.</description><subject>Bloch equations</subject><subject>Computer Simulation</subject><subject>Computing Methodologies</subject><subject>high performance computing</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Models, Biological</subject><subject>MRI simulation</subject><subject>object-oriented design patterns</subject><subject>sequence development</subject><subject>Software</subject><subject>User-Computer Interface</subject><issn>0740-3194</issn><issn>1522-2594</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtLw0AURgdRbK0u_APSnSikvfNIZmapRdtCo1AVwc2QTCY1mjRxJkH77432sRNXd3O-w-UgdIphgAHIsLDFgBAGwR7qYp8Qj_iS7aMucAYexZJ10JFzbwAgJWeHqEPA51wK3kWXk2zx6lXGpqUtoqU2fV0WVVNny0U_nE_7LiuaPKqzcumO0UEa5c6cbG4PPd3ePI4m3ux-PB1dzTzNAgg8wbGBhAnKAi0B00RLKk0UU8m0aL-lMU4YN0aQFPs4JnGsacSBQgIpcC5oD52vvZUtPxrjalVkTps8j5ambJwSggIRWMh_SU4p4wLToCUv1qS2pXPWpKqyWRHZlcKgfhqqtqH6bdiyZxtrExcm2ZHbaC0wXAOfWW5Wf5tUOA-3Sm-9yFxtvnaLyL6rgFPuq-e7sbpm4QsOyIMa02-R1oe6</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Stöcker, Tony</creator><creator>Vahedipour, Kaveh</creator><creator>Pflugfelder, Daniel</creator><creator>Shah, N. Jon</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201007</creationdate><title>High-performance computing MRI simulations</title><author>Stöcker, Tony ; Vahedipour, Kaveh ; Pflugfelder, Daniel ; Shah, N. Jon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4606-871e0d48346c9013dc939eab394c80023b1d47ee82f151b2bbc3a7030d0f07783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bloch equations</topic><topic>Computer Simulation</topic><topic>Computing Methodologies</topic><topic>high performance computing</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Models, Biological</topic><topic>MRI simulation</topic><topic>object-oriented design patterns</topic><topic>sequence development</topic><topic>Software</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stöcker, Tony</creatorcontrib><creatorcontrib>Vahedipour, Kaveh</creatorcontrib><creatorcontrib>Pflugfelder, Daniel</creatorcontrib><creatorcontrib>Shah, N. Jon</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stöcker, Tony</au><au>Vahedipour, Kaveh</au><au>Pflugfelder, Daniel</au><au>Shah, N. Jon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performance computing MRI simulations</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2010-07</date><risdate>2010</risdate><volume>64</volume><issue>1</issue><spage>186</spage><epage>193</epage><pages>186-193</pages><issn>0740-3194</issn><issn>1522-2594</issn><eissn>1522-2594</eissn><abstract>A new open‐source software project is presented, JEMRIS, the Jülich Extensible MRI Simulator, which provides an MRI sequence development and simulation environment for the MRI community. The development was driven by the desire to achieve generality of simulated three‐dimensional MRI experiments reflecting modern MRI systems hardware. The accompanying computational burden is overcome by means of parallel computing. Many aspects are covered that have not hitherto been simultaneously investigated in general MRI simulations such as parallel transmit and receive, important off‐resonance effects, nonlinear gradients, and arbitrary spatiotemporal parameter variations at different levels. The latter can be used to simulate various types of motion, for instance. The JEMRIS user interface is very simple to use, but nevertheless it presents few limitations. MRI sequences with arbitrary waveforms and complex interdependent modules are modeled in a graphical user interface–based environment requiring no further programming. This manuscript describes the concepts, methods, and performance of the software. Examples of novel simulation results in active fields of MRI research are given. Magn Reson Med 64:186–193, 2010. © 2010 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>20577987</pmid><doi>10.1002/mrm.22406</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2010-07, Vol.64 (1), p.186-193 |
issn | 0740-3194 1522-2594 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_883028189 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Bloch equations Computer Simulation Computing Methodologies high performance computing Humans Magnetic Resonance Imaging - methods Models, Biological MRI simulation object-oriented design patterns sequence development Software User-Computer Interface |
title | High-performance computing MRI simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performance%20computing%20MRI%20simulations&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=St%C3%B6cker,%20Tony&rft.date=2010-07&rft.volume=64&rft.issue=1&rft.spage=186&rft.epage=193&rft.pages=186-193&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.22406&rft_dat=%3Cproquest_cross%3E733478136%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733478136&rft_id=info:pmid/20577987&rfr_iscdi=true |