Study of the restitution of action potential duration using the artificial neural network

It is widely accepted that the APD (action potential duration) restitution plays a key role in the initializing and maintaining of the reentry arrhythmias. The Luo–Rudy II models paced with different protocols showed that the current APD had a complex relation with the previous APDs and diastole int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical biosciences 2007-05, Vol.207 (1), p.78-88
Hauptverfasser: Han, Xinwei, Chen, Yao, Gao, Weihua, Xue, Juel, Han, Xiaodong, Fang, Zuxiang, Yang, Cuiwei, Wu, Xiaomei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 88
container_issue 1
container_start_page 78
container_title Mathematical biosciences
container_volume 207
creator Han, Xinwei
Chen, Yao
Gao, Weihua
Xue, Juel
Han, Xiaodong
Fang, Zuxiang
Yang, Cuiwei
Wu, Xiaomei
description It is widely accepted that the APD (action potential duration) restitution plays a key role in the initializing and maintaining of the reentry arrhythmias. The Luo–Rudy II models paced with different protocols showed that the current APD had a complex relation with the previous APDs and diastole intervals (DIs). This relation could not be accurately described by a single exponential function. We used an artificial neural network to formularize this relation. The results suggested that back-propagation (BP) network could predict the current APD from the information of the first three previous beats. This would help provide a target for potential anti-arrhythmic therapies.
doi_str_mv 10.1016/j.mbs.2006.09.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883027358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002555640600191X</els_id><sourcerecordid>883027358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-7c6110a5d06765182a10ea1a42ad93c0f1a49ebc9ee1ca55b3c4fc7236b108913</originalsourceid><addsrcrecordid>eNp9kDtPxDAQhC0EguPxA2jQVVAl7MZxEosKIV4SEgVQUFmOswEfd8lhOyD-Pc7dSXRUs9qdGWk_xo4RUgQszmfpovZpBlCkIFNAucUmWJUy4cjzbTYByEQiRJHvsX3vZwBYIha7bG_UTOTVhL0-haH5mfbtNLzT1JEPNgzB9t240mY1LftAXbB6Pm0Gp1erwdvubRXRLtjWmvHaUTyPEr5793HIdlo993S00QP2cnP9fHWXPDze3l9dPiSGcxGS0hSIoEUDRVkIrDKNQBp1nulGcgNtHCXVRhKh0ULU3OStKTNe1AiVRH7Azta9S9d_DvEBtbDe0HyuO-oHr6qKQ1ZyUUXn6b_OErjEEsZKXBuN67131KqlswvtfhSCGsmrmYrk1UhegVSRfMycbMqHekHNX2KDOhou1gaKML4sOeWNpc5QYx2ZoJre_lP_C6KRlJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70391701</pqid></control><display><type>article</type><title>Study of the restitution of action potential duration using the artificial neural network</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Han, Xinwei ; Chen, Yao ; Gao, Weihua ; Xue, Juel ; Han, Xiaodong ; Fang, Zuxiang ; Yang, Cuiwei ; Wu, Xiaomei</creator><creatorcontrib>Han, Xinwei ; Chen, Yao ; Gao, Weihua ; Xue, Juel ; Han, Xiaodong ; Fang, Zuxiang ; Yang, Cuiwei ; Wu, Xiaomei</creatorcontrib><description>It is widely accepted that the APD (action potential duration) restitution plays a key role in the initializing and maintaining of the reentry arrhythmias. The Luo–Rudy II models paced with different protocols showed that the current APD had a complex relation with the previous APDs and diastole intervals (DIs). This relation could not be accurately described by a single exponential function. We used an artificial neural network to formularize this relation. The results suggested that back-propagation (BP) network could predict the current APD from the information of the first three previous beats. This would help provide a target for potential anti-arrhythmic therapies.</description><identifier>ISSN: 0025-5564</identifier><identifier>EISSN: 1879-3134</identifier><identifier>DOI: 10.1016/j.mbs.2006.09.019</identifier><identifier>PMID: 17112548</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action potential duration (APD) ; Action Potentials - physiology ; APD restitution ; Artificial neural network ; Diastole - physiology ; Feedback - physiology ; Humans ; Luo–Rudy II model ; Models, Cardiovascular ; Neural Networks (Computer) ; Ventricular Fibrillation - physiopathology</subject><ispartof>Mathematical biosciences, 2007-05, Vol.207 (1), p.78-88</ispartof><rights>2006 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c335t-7c6110a5d06765182a10ea1a42ad93c0f1a49ebc9ee1ca55b3c4fc7236b108913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mbs.2006.09.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17112548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Xinwei</creatorcontrib><creatorcontrib>Chen, Yao</creatorcontrib><creatorcontrib>Gao, Weihua</creatorcontrib><creatorcontrib>Xue, Juel</creatorcontrib><creatorcontrib>Han, Xiaodong</creatorcontrib><creatorcontrib>Fang, Zuxiang</creatorcontrib><creatorcontrib>Yang, Cuiwei</creatorcontrib><creatorcontrib>Wu, Xiaomei</creatorcontrib><title>Study of the restitution of action potential duration using the artificial neural network</title><title>Mathematical biosciences</title><addtitle>Math Biosci</addtitle><description>It is widely accepted that the APD (action potential duration) restitution plays a key role in the initializing and maintaining of the reentry arrhythmias. The Luo–Rudy II models paced with different protocols showed that the current APD had a complex relation with the previous APDs and diastole intervals (DIs). This relation could not be accurately described by a single exponential function. We used an artificial neural network to formularize this relation. The results suggested that back-propagation (BP) network could predict the current APD from the information of the first three previous beats. This would help provide a target for potential anti-arrhythmic therapies.</description><subject>Action potential duration (APD)</subject><subject>Action Potentials - physiology</subject><subject>APD restitution</subject><subject>Artificial neural network</subject><subject>Diastole - physiology</subject><subject>Feedback - physiology</subject><subject>Humans</subject><subject>Luo–Rudy II model</subject><subject>Models, Cardiovascular</subject><subject>Neural Networks (Computer)</subject><subject>Ventricular Fibrillation - physiopathology</subject><issn>0025-5564</issn><issn>1879-3134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kDtPxDAQhC0EguPxA2jQVVAl7MZxEosKIV4SEgVQUFmOswEfd8lhOyD-Pc7dSXRUs9qdGWk_xo4RUgQszmfpovZpBlCkIFNAucUmWJUy4cjzbTYByEQiRJHvsX3vZwBYIha7bG_UTOTVhL0-haH5mfbtNLzT1JEPNgzB9t240mY1LftAXbB6Pm0Gp1erwdvubRXRLtjWmvHaUTyPEr5793HIdlo993S00QP2cnP9fHWXPDze3l9dPiSGcxGS0hSIoEUDRVkIrDKNQBp1nulGcgNtHCXVRhKh0ULU3OStKTNe1AiVRH7Azta9S9d_DvEBtbDe0HyuO-oHr6qKQ1ZyUUXn6b_OErjEEsZKXBuN67131KqlswvtfhSCGsmrmYrk1UhegVSRfMycbMqHekHNX2KDOhou1gaKML4sOeWNpc5QYx2ZoJre_lP_C6KRlJQ</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Han, Xinwei</creator><creator>Chen, Yao</creator><creator>Gao, Weihua</creator><creator>Xue, Juel</creator><creator>Han, Xiaodong</creator><creator>Fang, Zuxiang</creator><creator>Yang, Cuiwei</creator><creator>Wu, Xiaomei</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20070501</creationdate><title>Study of the restitution of action potential duration using the artificial neural network</title><author>Han, Xinwei ; Chen, Yao ; Gao, Weihua ; Xue, Juel ; Han, Xiaodong ; Fang, Zuxiang ; Yang, Cuiwei ; Wu, Xiaomei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-7c6110a5d06765182a10ea1a42ad93c0f1a49ebc9ee1ca55b3c4fc7236b108913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Action potential duration (APD)</topic><topic>Action Potentials - physiology</topic><topic>APD restitution</topic><topic>Artificial neural network</topic><topic>Diastole - physiology</topic><topic>Feedback - physiology</topic><topic>Humans</topic><topic>Luo–Rudy II model</topic><topic>Models, Cardiovascular</topic><topic>Neural Networks (Computer)</topic><topic>Ventricular Fibrillation - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Xinwei</creatorcontrib><creatorcontrib>Chen, Yao</creatorcontrib><creatorcontrib>Gao, Weihua</creatorcontrib><creatorcontrib>Xue, Juel</creatorcontrib><creatorcontrib>Han, Xiaodong</creatorcontrib><creatorcontrib>Fang, Zuxiang</creatorcontrib><creatorcontrib>Yang, Cuiwei</creatorcontrib><creatorcontrib>Wu, Xiaomei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Mathematical biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Xinwei</au><au>Chen, Yao</au><au>Gao, Weihua</au><au>Xue, Juel</au><au>Han, Xiaodong</au><au>Fang, Zuxiang</au><au>Yang, Cuiwei</au><au>Wu, Xiaomei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of the restitution of action potential duration using the artificial neural network</atitle><jtitle>Mathematical biosciences</jtitle><addtitle>Math Biosci</addtitle><date>2007-05-01</date><risdate>2007</risdate><volume>207</volume><issue>1</issue><spage>78</spage><epage>88</epage><pages>78-88</pages><issn>0025-5564</issn><eissn>1879-3134</eissn><abstract>It is widely accepted that the APD (action potential duration) restitution plays a key role in the initializing and maintaining of the reentry arrhythmias. The Luo–Rudy II models paced with different protocols showed that the current APD had a complex relation with the previous APDs and diastole intervals (DIs). This relation could not be accurately described by a single exponential function. We used an artificial neural network to formularize this relation. The results suggested that back-propagation (BP) network could predict the current APD from the information of the first three previous beats. This would help provide a target for potential anti-arrhythmic therapies.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>17112548</pmid><doi>10.1016/j.mbs.2006.09.019</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5564
ispartof Mathematical biosciences, 2007-05, Vol.207 (1), p.78-88
issn 0025-5564
1879-3134
language eng
recordid cdi_proquest_miscellaneous_883027358
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Action potential duration (APD)
Action Potentials - physiology
APD restitution
Artificial neural network
Diastole - physiology
Feedback - physiology
Humans
Luo–Rudy II model
Models, Cardiovascular
Neural Networks (Computer)
Ventricular Fibrillation - physiopathology
title Study of the restitution of action potential duration using the artificial neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T18%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20the%20restitution%20of%20action%20potential%20duration%20using%20the%20artificial%20neural%20network&rft.jtitle=Mathematical%20biosciences&rft.au=Han,%20Xinwei&rft.date=2007-05-01&rft.volume=207&rft.issue=1&rft.spage=78&rft.epage=88&rft.pages=78-88&rft.issn=0025-5564&rft.eissn=1879-3134&rft_id=info:doi/10.1016/j.mbs.2006.09.019&rft_dat=%3Cproquest_cross%3E883027358%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70391701&rft_id=info:pmid/17112548&rft_els_id=S002555640600191X&rfr_iscdi=true