Study of the restitution of action potential duration using the artificial neural network
It is widely accepted that the APD (action potential duration) restitution plays a key role in the initializing and maintaining of the reentry arrhythmias. The Luo–Rudy II models paced with different protocols showed that the current APD had a complex relation with the previous APDs and diastole int...
Gespeichert in:
Veröffentlicht in: | Mathematical biosciences 2007-05, Vol.207 (1), p.78-88 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 88 |
---|---|
container_issue | 1 |
container_start_page | 78 |
container_title | Mathematical biosciences |
container_volume | 207 |
creator | Han, Xinwei Chen, Yao Gao, Weihua Xue, Juel Han, Xiaodong Fang, Zuxiang Yang, Cuiwei Wu, Xiaomei |
description | It is widely accepted that the APD (action potential duration) restitution plays a key role in the initializing and maintaining of the reentry arrhythmias. The Luo–Rudy II models paced with different protocols showed that the current APD had a complex relation with the previous APDs and diastole intervals (DIs). This relation could not be accurately described by a single exponential function. We used an artificial neural network to formularize this relation. The results suggested that back-propagation (BP) network could predict the current APD from the information of the first three previous beats. This would help provide a target for potential anti-arrhythmic therapies. |
doi_str_mv | 10.1016/j.mbs.2006.09.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883027358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002555640600191X</els_id><sourcerecordid>883027358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-7c6110a5d06765182a10ea1a42ad93c0f1a49ebc9ee1ca55b3c4fc7236b108913</originalsourceid><addsrcrecordid>eNp9kDtPxDAQhC0EguPxA2jQVVAl7MZxEosKIV4SEgVQUFmOswEfd8lhOyD-Pc7dSXRUs9qdGWk_xo4RUgQszmfpovZpBlCkIFNAucUmWJUy4cjzbTYByEQiRJHvsX3vZwBYIha7bG_UTOTVhL0-haH5mfbtNLzT1JEPNgzB9t240mY1LftAXbB6Pm0Gp1erwdvubRXRLtjWmvHaUTyPEr5793HIdlo993S00QP2cnP9fHWXPDze3l9dPiSGcxGS0hSIoEUDRVkIrDKNQBp1nulGcgNtHCXVRhKh0ULU3OStKTNe1AiVRH7Azta9S9d_DvEBtbDe0HyuO-oHr6qKQ1ZyUUXn6b_OErjEEsZKXBuN67131KqlswvtfhSCGsmrmYrk1UhegVSRfMycbMqHekHNX2KDOhou1gaKML4sOeWNpc5QYx2ZoJre_lP_C6KRlJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70391701</pqid></control><display><type>article</type><title>Study of the restitution of action potential duration using the artificial neural network</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Han, Xinwei ; Chen, Yao ; Gao, Weihua ; Xue, Juel ; Han, Xiaodong ; Fang, Zuxiang ; Yang, Cuiwei ; Wu, Xiaomei</creator><creatorcontrib>Han, Xinwei ; Chen, Yao ; Gao, Weihua ; Xue, Juel ; Han, Xiaodong ; Fang, Zuxiang ; Yang, Cuiwei ; Wu, Xiaomei</creatorcontrib><description>It is widely accepted that the APD (action potential duration) restitution plays a key role in the initializing and maintaining of the reentry arrhythmias. The Luo–Rudy II models paced with different protocols showed that the current APD had a complex relation with the previous APDs and diastole intervals (DIs). This relation could not be accurately described by a single exponential function. We used an artificial neural network to formularize this relation. The results suggested that back-propagation (BP) network could predict the current APD from the information of the first three previous beats. This would help provide a target for potential anti-arrhythmic therapies.</description><identifier>ISSN: 0025-5564</identifier><identifier>EISSN: 1879-3134</identifier><identifier>DOI: 10.1016/j.mbs.2006.09.019</identifier><identifier>PMID: 17112548</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action potential duration (APD) ; Action Potentials - physiology ; APD restitution ; Artificial neural network ; Diastole - physiology ; Feedback - physiology ; Humans ; Luo–Rudy II model ; Models, Cardiovascular ; Neural Networks (Computer) ; Ventricular Fibrillation - physiopathology</subject><ispartof>Mathematical biosciences, 2007-05, Vol.207 (1), p.78-88</ispartof><rights>2006 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c335t-7c6110a5d06765182a10ea1a42ad93c0f1a49ebc9ee1ca55b3c4fc7236b108913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mbs.2006.09.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17112548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Xinwei</creatorcontrib><creatorcontrib>Chen, Yao</creatorcontrib><creatorcontrib>Gao, Weihua</creatorcontrib><creatorcontrib>Xue, Juel</creatorcontrib><creatorcontrib>Han, Xiaodong</creatorcontrib><creatorcontrib>Fang, Zuxiang</creatorcontrib><creatorcontrib>Yang, Cuiwei</creatorcontrib><creatorcontrib>Wu, Xiaomei</creatorcontrib><title>Study of the restitution of action potential duration using the artificial neural network</title><title>Mathematical biosciences</title><addtitle>Math Biosci</addtitle><description>It is widely accepted that the APD (action potential duration) restitution plays a key role in the initializing and maintaining of the reentry arrhythmias. The Luo–Rudy II models paced with different protocols showed that the current APD had a complex relation with the previous APDs and diastole intervals (DIs). This relation could not be accurately described by a single exponential function. We used an artificial neural network to formularize this relation. The results suggested that back-propagation (BP) network could predict the current APD from the information of the first three previous beats. This would help provide a target for potential anti-arrhythmic therapies.</description><subject>Action potential duration (APD)</subject><subject>Action Potentials - physiology</subject><subject>APD restitution</subject><subject>Artificial neural network</subject><subject>Diastole - physiology</subject><subject>Feedback - physiology</subject><subject>Humans</subject><subject>Luo–Rudy II model</subject><subject>Models, Cardiovascular</subject><subject>Neural Networks (Computer)</subject><subject>Ventricular Fibrillation - physiopathology</subject><issn>0025-5564</issn><issn>1879-3134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kDtPxDAQhC0EguPxA2jQVVAl7MZxEosKIV4SEgVQUFmOswEfd8lhOyD-Pc7dSXRUs9qdGWk_xo4RUgQszmfpovZpBlCkIFNAucUmWJUy4cjzbTYByEQiRJHvsX3vZwBYIha7bG_UTOTVhL0-haH5mfbtNLzT1JEPNgzB9t240mY1LftAXbB6Pm0Gp1erwdvubRXRLtjWmvHaUTyPEr5793HIdlo993S00QP2cnP9fHWXPDze3l9dPiSGcxGS0hSIoEUDRVkIrDKNQBp1nulGcgNtHCXVRhKh0ULU3OStKTNe1AiVRH7Azta9S9d_DvEBtbDe0HyuO-oHr6qKQ1ZyUUXn6b_OErjEEsZKXBuN67131KqlswvtfhSCGsmrmYrk1UhegVSRfMycbMqHekHNX2KDOhou1gaKML4sOeWNpc5QYx2ZoJre_lP_C6KRlJQ</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Han, Xinwei</creator><creator>Chen, Yao</creator><creator>Gao, Weihua</creator><creator>Xue, Juel</creator><creator>Han, Xiaodong</creator><creator>Fang, Zuxiang</creator><creator>Yang, Cuiwei</creator><creator>Wu, Xiaomei</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20070501</creationdate><title>Study of the restitution of action potential duration using the artificial neural network</title><author>Han, Xinwei ; Chen, Yao ; Gao, Weihua ; Xue, Juel ; Han, Xiaodong ; Fang, Zuxiang ; Yang, Cuiwei ; Wu, Xiaomei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-7c6110a5d06765182a10ea1a42ad93c0f1a49ebc9ee1ca55b3c4fc7236b108913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Action potential duration (APD)</topic><topic>Action Potentials - physiology</topic><topic>APD restitution</topic><topic>Artificial neural network</topic><topic>Diastole - physiology</topic><topic>Feedback - physiology</topic><topic>Humans</topic><topic>Luo–Rudy II model</topic><topic>Models, Cardiovascular</topic><topic>Neural Networks (Computer)</topic><topic>Ventricular Fibrillation - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Xinwei</creatorcontrib><creatorcontrib>Chen, Yao</creatorcontrib><creatorcontrib>Gao, Weihua</creatorcontrib><creatorcontrib>Xue, Juel</creatorcontrib><creatorcontrib>Han, Xiaodong</creatorcontrib><creatorcontrib>Fang, Zuxiang</creatorcontrib><creatorcontrib>Yang, Cuiwei</creatorcontrib><creatorcontrib>Wu, Xiaomei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Mathematical biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Xinwei</au><au>Chen, Yao</au><au>Gao, Weihua</au><au>Xue, Juel</au><au>Han, Xiaodong</au><au>Fang, Zuxiang</au><au>Yang, Cuiwei</au><au>Wu, Xiaomei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of the restitution of action potential duration using the artificial neural network</atitle><jtitle>Mathematical biosciences</jtitle><addtitle>Math Biosci</addtitle><date>2007-05-01</date><risdate>2007</risdate><volume>207</volume><issue>1</issue><spage>78</spage><epage>88</epage><pages>78-88</pages><issn>0025-5564</issn><eissn>1879-3134</eissn><abstract>It is widely accepted that the APD (action potential duration) restitution plays a key role in the initializing and maintaining of the reentry arrhythmias. The Luo–Rudy II models paced with different protocols showed that the current APD had a complex relation with the previous APDs and diastole intervals (DIs). This relation could not be accurately described by a single exponential function. We used an artificial neural network to formularize this relation. The results suggested that back-propagation (BP) network could predict the current APD from the information of the first three previous beats. This would help provide a target for potential anti-arrhythmic therapies.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>17112548</pmid><doi>10.1016/j.mbs.2006.09.019</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5564 |
ispartof | Mathematical biosciences, 2007-05, Vol.207 (1), p.78-88 |
issn | 0025-5564 1879-3134 |
language | eng |
recordid | cdi_proquest_miscellaneous_883027358 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Action potential duration (APD) Action Potentials - physiology APD restitution Artificial neural network Diastole - physiology Feedback - physiology Humans Luo–Rudy II model Models, Cardiovascular Neural Networks (Computer) Ventricular Fibrillation - physiopathology |
title | Study of the restitution of action potential duration using the artificial neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T18%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20the%20restitution%20of%20action%20potential%20duration%20using%20the%20artificial%20neural%20network&rft.jtitle=Mathematical%20biosciences&rft.au=Han,%20Xinwei&rft.date=2007-05-01&rft.volume=207&rft.issue=1&rft.spage=78&rft.epage=88&rft.pages=78-88&rft.issn=0025-5564&rft.eissn=1879-3134&rft_id=info:doi/10.1016/j.mbs.2006.09.019&rft_dat=%3Cproquest_cross%3E883027358%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70391701&rft_id=info:pmid/17112548&rft_els_id=S002555640600191X&rfr_iscdi=true |